Seed_Magnetic_Fields_BNS: An Einstein Toolkit thorn for seeding magnetic fields to binary neutron star systems

Zachariah B. Etienne <zachetie *at* gmail *dot* com >
Documentation by Leonardo R. Werneck <wernecklr *at* gmail *dot* com >

Feb 2, 2022

Abstract

Seed_Magnetic_Fields_BNS is designed to seed a poloidal magnetic field to binary neutron star (BNS) initial data.

1 Overview

We provide a basic overview of the mathematical expressions implemented by this thorn, as well as key references.

1.1 Poloidal \(\vec {A}\): A_field_type = poloidal_A_interior.

We seed a poloidal magnetic field in the interior of the two neutron stars (NSs) following the prescription described in Appendix C of [1], namely \begin {align} A_{x} &= -yA_{\rm b}\max \left (P-P_{\rm cut},0\right )\;,\\ A_{y} &= +xA_{\rm b}\max \left (P-P_{\rm cut},0\right )\;,\\ A_{z} &= 0\;. \end {align}

It is recommended to set \(P_{\rm cut}\) to about 4% of the initial maximum pressure. Furthermore, \(A_{\rm b}\) should be adjusted in order to obtain the desired initial magnetic-to-gas pressure ratio.

1.2 Dipolar \(\vec {A}\): A_field_type = dipolar_A_everywhere

We seed a dipolar magnetic field onto the BNS system by extending the prescription of [2] from one to two NSs. Namely, we consider that each neutron star contributes the following term to the vector potential \(\vec {A}\) in spherical basis: \begin {equation} A^{\phi ,n} = \frac {\pi r_{0,n}^{2}I_{0,n}\varpi ^{2}}{\left (r_{0,n}^{2} + r_{n}^{2}\right )^{3/2}} \left [1 + \frac {15}{8}\frac {r_{0,n}^{2}\left (r_{0,n}^{2} + \varpi _{n}^{2}\right )}{\left (r_{0,n}^{2}+r_{n}^{2}\right )}\right ]\;, \end {equation} where \(n=1,2\) identifies the neutron star, \(r_{0,n}^{2} \equiv r^{\mathrm {NS}}_{n}r^{\mathrm {NS}}_{0,n}\), where \(r^{\mathrm {NS}}_{n}\) are the NS radii and \(r^{\mathrm {NS}}_{0,n}\) the radii of the current loops, \(r_{n}^{2} = \left (x-x^{\mathrm {NS}}_{n}\right )^{2}+y^{2}+z^{2}\), \(x^{\mathrm {NS}}_{n}\) is the position of each neutron star (assumed to be in the \(x\)-axis), and \(\varpi _{n}^{2} = \left (x-x_{n}\right )^{2}+y^{2}\).

We then set the vector potential in the Cartesian basis using the standard formulae \begin {align} A^{x} &= -\left (y+\frac {\Delta y}{2}\right )\left (A^{\phi ,1} + A^{\phi ,2}\right )\;,\\ A^{y} &= \left (x_{1}+\frac {\Delta x}{2}\right )A^{\phi ,1} + \left (x_{2}+\frac {\Delta x}{2}\right )A^{\phi ,2}\;. \end {align}

Note that the behavior described above is valid when using staggered vector potentials (see Table 1 for details).






Variable Storage location


Non-staggered \(\left (x_{i},y_{j},z_{k}\right )\)
\(A^{x}\) \(\left (x_{i},y_{j}+\frac {\Delta y}{2},z_{k}+\frac {\Delta z}{2}\right )\)
\(A^{y}\) \(\left (x_{i}+\frac {\Delta x}{2},y_{j},z_{k}+\frac {\Delta z}{2}\right )\)
\(A^{z}\) \(\left (x_{i}+\frac {\Delta x}{2},y_{j}+\frac {\Delta y}{2},z_{k}\right )\)





Table 1: Storage location on grid of vector potential \(A^{i}\).

2 Basic usage

The following lines provide an example of how to use this thorn to use this thorn to seed a poloidal magnetic field to the interior of two stars located at \(x=\pm 15\) (in code units). The star radii are not specified explicitly, and we use the default radius \(13.5\) as a good enough estimate.

ActiveThorns = "Seed_Magnetic_Fields_BNS"
Seed_Magnetic_Fields_BNS::enable_IllinoisGRMHD_staggered_A_fields = "yes"
Seed_Magnetic_Fields_BNS::A_field_type = "poloidal_A_interior"
Seed_Magnetic_Fields_BNS::have_two_NSs_along_x_axis = "yes"
Seed_Magnetic_Fields_BNS::x_c1 = +15
Seed_Magnetic_Fields_BNS::x_c2 = -15
Seed_Magnetic_Fields_BNS::A_b = 49529.954
Seed_Magnetic_Fields_BNS::n_s = 2.0
# Set to 4% initial max pressure, which is 0.000113824867150113*0.04 = .00000455299468600452
Seed_Magnetic_Fields_BNS::P_cut = 0.00000455299468600452

References

[1]   Z. B. Etienne, V. Paschalidis, R. Haas, P. Mösta, & S. L. Shapiro, IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes, Classical and Quantum Gravity, 32(17), 175009 (2015).

[2]   V. Paschalidis, Z. B. Etienne, & S. L. Shapiro, General-relativistic simulations of binary black hole-neutron stars: precursor electromagnetic signals, Physical Review D, 88(2), 021504 (2013).

3 Parameters




a_b
Scope: restricted  REAL



Description: Magnetic field strength parameter.



Range   Default: 1e-3
*:*
Any real






a_field_type
Scope: restricted  KEYWORD



Description: Which field structure to use.



Range   Default: poloidal_A_interior
see [1] below
Dipole magnetic field, interior to the star
see [1] below
Dipole magnetic field everywhere



[1]

poloidal\_A\_interior

[1]

dipolar\_A\_everywhere




enable_illinoisgrmhd_staggered_a_fields
Scope: restricted  BOOLEAN



Description: Define A fields on an IllinoisGRMHD staggered grid



  Default: no






have_two_nss_along_x_axis
Scope: restricted  BOOLEAN



Description: Do we have two NSs centered along x-axis?



  Default: no






i_zero_ns1
Scope: restricted  REAL



Description: Magnetic field loop current of NS1.



Range   Default: 0.0
0.0:*)






i_zero_ns2
Scope: restricted  REAL



Description: Magnetic field loop current of NS2.



Range   Default: 0.0
0.0:*)






n_s
Scope: restricted  REAL



Description: Magnetic field strength pressure exponent.



Range   Default: 1.0
*:*
Any real






p_cut
Scope: restricted  REAL



Description: Cutoff pressure, below which vector potential is set to zero. Typically set to 4% of the maximum initial pressure.



Range   Default: 1e-5
0:*
Positive






r_ns1
Scope: restricted  REAL



Description: Radius of NS1. Does not have to be perfect, but must not overlap other star.



Range   Default: 13.5
0:*
Any positive






r_ns2
Scope: restricted  REAL



Description: Radius of NS2. Does not have to be perfect, but must not overlap other star.



Range   Default: 13.5
0:*
Any positive






r_zero_ns1
Scope: restricted  REAL



Description: Current loop radius of NS1.



Range   Default: 1.0
0.0:*)






r_zero_ns2
Scope: restricted  REAL



Description: Current loop radius of NS2.



Range   Default: 1.0
0.0:*)






x_c1
Scope: restricted  REAL



Description: x coordinate of NS1 center



Range   Default: -15.2
*:*
Any real






x_c2
Scope: restricted  REAL



Description: x coordinate of NS2 center



Range   Default: 15.2
*:*
Any real



4 Interfaces

General

Implements:

seed_magnetic_fields_privt

Inherits:

grid

admbase

hydrobase

5 Schedule

This section lists all the variables which are assigned storage by thorn WVUThorns_Diagnostics/Seed_Magnetic_Fields_BNS. Storage can either last for the duration of the run (Always means that if this thorn is activated storage will be assigned, Conditional means that if this thorn is activated storage will be assigned for the duration of the run if some condition is met), or can be turned on for the duration of a schedule function.

Storage

 

Always:  
HydroBase::rho[1] HydroBase::press[1] HydroBase::eps[1] HydroBase::vel[1] HydroBase::Bvec[1] HydroBase::Avec[1] HydroBase::Aphi[1] 
   

Scheduled Functions

HydroBase_Initial

  seed_magnetic_fields_privt

  set up binary neutron star seed magnetic fields.

 

 After: meudon_bin_ns_initialise
  Before: illinoisgrmhd_id_converter
 Language:c
 Type: function