A Multi-Patch Wave Toy

Erik Schnetter <schnetter@aei.mpg.de>
Luis Lehner <lehner@lsu.edu>
Manuel Tiglio <tiglio@lsu.edu>

November 20, 2024

1 Physical System

The massless wave equation for a scalar field \(\phi \) can be written as

∂μ(γμνdν) = 0

where \(\gamma ^{\mu \nu }=\sqrt {-g}g^{\mu \nu }\), and \(d_{\mu }\equiv \partial _{\mu }\phi \). Using the expressions \(\sqrt {-g} = \alpha \sqrt {h}\) and \begin {displaymath} g^{\mu \nu } = \left ( \begin {array}{cc} -1/\alpha ^2 & \beta ^i/\alpha ^2 \\ \beta ^j/\alpha ^2 & \gamma ^{ij} - \beta ^i \beta ^j/\alpha ^2 \end {array} \right ), \end {displaymath} where \(\gamma ^{ij}\) is the inverse of the three metric, the equation can be rewritten as

\begin {eqnarray} \dot {\phi } &=& \Pi , \\ \dot {\Pi } &=& \beta ^i\partial _i\Pi + \frac {\alpha }{\sqrt {h}}\partial _i\left (\frac {\sqrt {h}}{\alpha } \beta ^i\Pi + \frac {\sqrt {h}}{\alpha }H^{ij}d_j \right ) + \frac {\alpha }{\sqrt {h}}d_i\partial _t \left (\frac {\sqrt {h}\beta ^i}{\alpha } \right ) - \frac {\Pi \alpha }{\sqrt {h}}\partial _t \left ( \frac {\sqrt {h}}{\alpha } \right ), \\ \dot {d_i} &=& \partial _i \Pi \end {eqnarray}

with \(H^{ij} \equiv \alpha ^2 \gamma ^{ij} - \beta ^i \beta ^j\). The non-shift speed modes with respect to a boundary with normal \(n_i\) are

v± = λΠ + Hijn d
              i j

and the shift speed modes are \(d_A\), with \(A\) transversal directions.

The physical energy is

    1∫  1                      √ --
E = 2   α∖left[Π2 + Hijdidj∖right] hdx3

and the way the equations above have been written this energy is not increasing in the stationary background case if homogeneous boundary conditions are given at outer boundaries, also at the discrete level (replacing above \(\partial _i\) by \(D_i\)).

The implementation of the field equations in the code differs slightly from the above. Assuming a stationary background and expanding out the derivative operator, we obtain the equations in the final form

\begin {eqnarray} \dot {\phi } &=& \Pi , \\ \dot {\Pi } &=& \beta ^i\partial _i\Pi + \frac {\alpha }{\sqrt {h}}\partial _i\left (\frac {\sqrt {h}}{\alpha } \beta ^i\Pi \right ) + \frac {\alpha }{\sqrt {h}}\partial _i\left (\frac {\sqrt {h}}{\alpha }H^{ij}\right ) \partial _j \phi + \frac {\alpha }{\sqrt {h}} \frac {\sqrt {h}}{\alpha } H^{ij} \partial _i\partial _j \phi . \end {eqnarray}

2 Non-linear addition to the multi-patch wave toy

Simple addition to the wave multi-patch toy to get started on this.

2.1 Physical System

This is just a non-linear wave equation obtained, a very minor modification to the wave equation thorn adding a different initial data and a slight modification to the right hand side. A reference to this is in a paper by Liebling to appear in Phys. Rev. D (2005). The non-linear wave equation is written as

∂ (γ μνd ) = ϕp
 u    ν

where \(\gamma ^{\mu \nu }=\sqrt {-g}g^{\mu \nu }\), and \(d_{\mu }=\partial _{\mu }\phi \) and \(p\) must be an odd integer \(\ge 3\).

The initial data coded is given by

\begin {eqnarray} \phi &=& A e^{-(r_1 - R)^2/\delta ^2} \\ \Pi &=& \mu \phi _{,r} + \Omega ( y \phi _{,x} - x \phi _{,y} ) \\ d_i = \phi _{,i} \end {eqnarray}

with \(\tilde r^2 = \epsilon _x x^2 + \epsilon _y y^2 + z^2\).

The parameters used for this initial data are given some distinct names to avoid conflicts with existing ones and are as follows:

Note, as the solution is not known, one must set for now the incoming fields to \(0\). CPBC might one day be put... though who knows :-)

3 Formulations

\begin {eqnarray} U & = & \left [ \begin {array}{cccc} \rho & v_x & v_y & v_z \end {array} \right ]^T = \left [ \begin {array}{cc} \rho & v_i \end {array} \right ]^T \\ \partial _t U & = & A^i \partial _i U + \cdots \\ || n_i || & \ne & 1 \end {eqnarray}

3.1 \(dt\)

Setting \(\rho = \partial _t u\).

RHS:

\begin {eqnarray} H^{ij} & = & \alpha ^2 \gamma ^{ij} - \beta ^i \beta ^j \\ \partial _t u & = & \rho \\ \partial _t \rho & = & \beta ^i \partial _i \rho + \frac {\alpha }{\epsilon } \partial _i \frac {\epsilon }{\alpha } \left ( \beta ^i \rho + H^{ij} v_j \right ) \\ \partial _t v_i & = & \partial _i \rho \end {eqnarray}

Propagation matrix:

\begin {eqnarray} A^x & = & \left ( \begin {array}{cccc} 2 \beta ^x & - \beta ^x \beta ^x + \alpha ^2 \gamma ^{xx} & - \beta ^x \beta ^y + \gamma ^{xy} \alpha ^2 & -\beta ^x \beta ^z + \alpha ^2 \gamma ^{xz} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end {array} \right ) \end {eqnarray}
\begin {eqnarray} A^n & = & \left ( \begin {array}{cc} 2 \beta ^i n_i & \left ( - \beta ^i \beta ^j + \alpha ^2 \gamma ^{ij} \right ) n_i \\ n_i & 0 \end {array} \right ) \end {eqnarray}

Eigensystem:

\begin {eqnarray} \lambda _1 = 0 &, & w_1 = \left [ \begin {array}{cccc} 0 & 0 & 0 & 1 \end {array} \right ]^T \\ \lambda _2 = 0 &, & w_2 = \left [ \begin {array}{cccc} 0 & 0 & 1 & 0 \end {array} \right ]^T \\ \lambda _3 = \beta ^x - \alpha \sqrt {\gamma ^{xx}} &, & w_3 = \left [ \begin {array}{cccc} \beta ^x - \alpha \sqrt {\gamma ^{xx}} & \beta ^x \beta ^x + \alpha ^2 \gamma ^{xx} & \beta ^x \beta ^y + \alpha ^2 \gamma ^{xy} & \beta ^x \beta ^z + \alpha ^2 \gamma ^{xz} \end {array} \right ]^T \\ \lambda _4 = \beta ^x + \alpha \sqrt {\gamma ^{xx}} &, & w_4 = \left [ \begin {array}{cccc} \beta ^x + \alpha \sqrt {\gamma ^{xx}} & \beta ^x \beta ^x + \alpha ^2 \gamma ^{xx} & \beta ^x \beta ^y + \alpha ^2 \gamma ^{xy} & \beta ^x \beta ^z + \alpha ^2 \gamma ^{xz} \end {array} \right ]^T \end {eqnarray}
\begin {eqnarray} \lambda _t = 0 &, & w_t = \left [ \begin {array}{cc} 0 & t_i \end {array} \right ]^T \\ \lambda _\pm = \beta ^i n_i \pm \alpha \sqrt {\gamma ^{ij} n_i n_j} &, & w_\pm = \left [ \begin {array}{cccc} \beta ^i n_i \pm \alpha \sqrt {\gamma ^{ij} n_i n_j} & H^{ij} n_j \end {array} \right ]^T \end {eqnarray}

3.2 \(d0\)

Setting \(\rho = \mathcal {L}_n u\) with \(n_a = D_a t\), leading to \(\rho = \partial _0 u = (1/\alpha ) \partial _t u - (1/\alpha ) \beta ^i \partial _i u\).

RHS:

\begin {eqnarray} H^{ij} & = & \gamma ^{ij} \\ \partial _t u & = & \alpha \rho + \beta ^i v_i \\ \partial _t \rho & = & \beta ^i \partial _i \rho + \frac {1}{\epsilon } \partial _i \epsilon \alpha H^{ij} v_j + \frac {\rho }{\epsilon } \partial _i \epsilon \beta ^i \\ \partial _t v_i & = & \beta ^j \partial _j v_i + v_j \partial _i \beta ^j + \partial _i \alpha \rho \end {eqnarray}

Propagation matrix:

\begin {eqnarray} A^x & = & \left ( \begin {array}{cccc} \beta ^x & \alpha \gamma ^{xx} & \alpha \gamma ^{xy} & \alpha \gamma ^{xz} \\ \alpha & \beta ^x & 0 & 0 \\ 0 & 0 & \beta ^x & 0 \\ 0 & 0 & 0 & \beta ^x \end {array} \right ) \end {eqnarray}
\begin {eqnarray} A^n & = & \left ( \begin {array}{cc} \beta ^i n_i & \alpha \gamma ^{ij} n_i \\ \alpha n_i & \beta ^k n_k \delta _{ij} \end {array} \right ) \end {eqnarray}

Eigensystem:

\begin {eqnarray} \lambda _t = \beta ^i n_i &, & w_t = \left [ \begin {array}{cccc} 0 & - \gamma ^{ij} n_j n_k t^k + \gamma ^{jk} n_j n_k t^i \end {array} \right ]^T \\ \lambda _\pm = \beta ^i n_i \pm \alpha \sqrt { \gamma ^{ij} n_i n_j } &, & w_\pm = \left [ \begin {array}{cccc} \pm \sqrt { \gamma ^{ij} n_i n_j } & \gamma ^{ij} n_j \end {array} \right ]^T \end {eqnarray}

3.3 \(dk\)

(This section very probably contains errors, say Erik on 2005-04-13.)

Setting \(\rho = \mathcal {L}_k u\) with a “Killing” vector \(k^a = \partial _t x^a\), leading to \(\rho = (1/\alpha ) \partial _t u\).

RHS:

\begin {eqnarray} H^{ij} & = & \gamma ^{ij} - \frac { \beta ^i \beta ^j }{ \alpha ^2 } \\ \partial _t u & = & \alpha \rho \\ \partial _t \rho & = & \frac {\beta ^i}{\alpha } \partial _i \alpha \rho + \frac {1}{\epsilon } \partial _i \epsilon \left ( \beta ^i \rho + \alpha H^{ij} v_j \right ) \\ \partial _t v_i & = & \partial _i \alpha \rho \end {eqnarray}

Propagation matrix:

\begin {eqnarray} A^x & = & \left ( \begin {array}{cccc} 2 \beta ^x & \alpha \left ( - \frac {\beta ^x \beta ^x}{\alpha ^2} + \gamma ^{xx} \right ) & \alpha \left ( - \frac {\beta ^x \beta ^y}{\alpha ^2} + \gamma ^{xy} \right ) & \alpha \left ( - \frac {\beta ^x \beta ^z}{\alpha ^2} + \gamma ^{xz} \right ) \\ \alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end {array} \right ) \end {eqnarray}

Eigensystem:

\begin {eqnarray} \lambda _1 = 0 &, & w_1 = \left [ \begin {array}{cccc} 0 & - \beta ^x \beta ^z + \alpha ^2 \gamma ^{xz} & 0 & \beta ^x \beta ^x - \alpha ^2 \gamma ^{xx} \end {array} \right ]^T \\ \lambda _2 = 0 &, & w_2 = \left [ \begin {array}{cccc} 0 & - \beta ^x \beta ^y + \alpha ^2 \gamma ^{xy} & \beta ^x \beta ^x - \alpha ^2 \gamma ^{xx} & 0 \end {array} \right ]^T \\ \lambda _3 = \beta ^x - \alpha \sqrt {\gamma ^{xx}} &, & w_3 = \left [ \begin {array}{cccc} \beta ^x - \sqrt {\gamma ^{xx}} & \alpha & 0 & 0 \end {array} \right ]^T \\ \lambda _4 = \beta ^x + \alpha \sqrt {\gamma ^{xx}} &, & w_4 = \left [ \begin {array}{cccc} \beta ^x + \sqrt {\gamma ^{xx}} & \alpha & 0 & 0 \end {array} \right ]^T \end {eqnarray}

References

[1]   Gioel Calabrese, Luis Lehner, Dave Neilsen, Jorge Pullin, Oscar Reula, Olivier Sarbach, Manuel Tiglio, Novel finite-differencing techniques for numerical relativity: application to black-hole excision, Class. Quantum Grav. 20, L245 (2003), gr-qc/0302072.

4 Parameters




amplitude
Scope: private REAL



Description: Amplitude



Range Default: 1.0
*:*






anl
Scope: private REAL



Description: Amplitude of the non-linear Gaussian



Range Default: 0.0
*:*






bound
Scope: private STRING



Description: Boundary condition



Range Default: static
.*
any registered boundary condition






compute_second_derivative_from_first_derivative
Scope: private BOOLEAN



Description: Take first derivative twice to compute second derivate



Default: no






deltanl
Scope: private REAL



Description: sigma of the non-linear Gaussian



Range Default: 0.0
*:*






eps
Scope: private REAL



Description: A small number



Range Default: 1.0e-10
0:*






epsx
Scope: private REAL



Description: eps in x-direction of the non-linear Gaussian



Range Default: 0.0
*:*






epsy
Scope: private REAL



Description: eps in y-direction of the non-linear Gaussian



Range Default: 0.0
*:*






initial_data
Scope: private KEYWORD



Description: Type of initial data



Range Default: plane
linear
x and y coordinates
plane
Plane wave
Gaussian
Gaussian wave packet
GaussianNonLinear
Gaussian wave packet for the non-linear RHS
GeneralMultipole
Multipole with arbitrary l and m
multipole
L=1 initial data, Gaussian in r
multipole l=1, m=0
L=1 m=0 initial data, Gaussian in r, u=0
multipole l=1, m=1
L=1 m=1 initial data, Gaussian in r, u=0
multipole l=1, m=-1
L=1 m=-1 initial data, Gaussian in r, u=0
multipole l=2
L=2 initial data, Gaussian in r
multipole l=2, u=0
L=2 initial data, Gaussian in r, u=0
multipole l=2, m=1
L=2 m=1 initial data, Gaussian in r, u=0
multipole l=2, m=-1
L=2 m=-1 initial data, Gaussian in r, u=0
multipole l=2, m=2
L=2 m=2 initial data, Gaussian in r, u=0
multipole l=2, m=-2
L=2 m=-2 initial data, Gaussian in r, u=0
multipole l=2, m=-2
L=2 m=-2 initial data, Gaussian in r, u=0
multipole l=4, m=0
L=4 m=0 initial data, Gaussian in r, u=0
multipole l=4, m=1
L=4 m=1 initial data, Gaussian in r, u=0
multipole l=4, m=-1
L=4 m=-1 initial data, Gaussian in r, u=0
multipole l=4, m=2
L=4 m=-2 initial data, Gaussian in r, u=0
multipole l=4, m=-2
L=4 m=-2 initial data, Gaussian in r, u=0
multipole l=4, m=3
L=4 m=3 initial data, Gaussian in r, u=0
multipole l=4, m=-3
L=4 m=-3 initial data, Gaussian in r, u=0
multipole l=4, m=4
L=4 m=4 initial data, Gaussian in r, u=0
multipole l=4, m=-4
L=4 m=-4 initial data, Gaussian in r, u=0
noise
Random noise
debug
number of current patch and grid point index






initial_data_analytic_derivatives
Scope: private BOOLEAN



Description: Calculate spatial derivatives of the initial data analytically?



Default: no






lapse
Scope: private REAL



Description: Lapse function multiplier



Range Default: 1.0
*:*
must not be zero






mass
Scope: private REAL



Description: Mass M



Range Default: 1.0
*:*






metric
Scope: private KEYWORD



Description: Global metric



Range Default: Minkowski
Minkowski
Minkowski
Kerr-Schild
Kerr-Schild
Kerr
Kerr Black Hole






multipole_l
Scope: private INT



Description: For GeneralMultipole initial data: degree of spherical harmonic function



Range Default: 2
0:*
A positive integer






multipole_m
Scope: private INT



Description: For GeneralMultipole initial data: order of spherical harmonic function



Range Default: 2
*:*
An integer -l<=m<=l






multipole_s
Scope: private INT



Description: For GeneralMultipole initial data: spin weight spherical harmonic function



Range Default: (none)
*:*
A positive integer






munl
Scope: private REAL



Description: Speed of the non-linear Gaussian



Range Default: 0.0
*:*






nonlinearrhs
Scope: private BOOLEAN



Description: Add a non-linear term to the RHS?



Default: no






numevolvedvars
Scope: private INT



Description: The number of evolved variables in this thorn



Range Default: 5
5:5
five






omenl
Scope: private REAL



Description: Omega of the non-linear Gaussian



Range Default: 0.0
*:*






outer_bound
Scope: private STRING



Description: outer boundary



Range Default: solution
zero
set all characteristics to zero
solution
use the same analytic solution as for the initial data
dirichlet
set all fields to zero
radiative
radiative boundary
none
no boundary condition






outer_penalty_bound
Scope: private STRING



Description: outer penalty boundary



Range Default: zero
zero
set all characteristics to zero
solution
use the same analytic solution as for the initial data






powerrhs
Scope: private REAL



Description: Exponent in the non-linear RHS term



Range Default: 5.0
3.0:13.0






radius
Scope: private REAL



Description: Radius of the Gaussian



Range Default: 0.0
0:*






recalculate_rhs
Scope: private BOOLEAN



Description: Recalculate the RHSs in the ANALYSIS timebin



Default: yes






rhsbound
Scope: private STRING



Description: Boundary condition during RHS evaluation



Range Default: none
.*
any registered boundary condition






rnl
Scope: private REAL



Description: How fat the non-linear Gaussian is (r-R)



Range Default: 0.0
*:*






shift
Scope: private REAL



Description: Shift vector addition



Range Default: 0.0
*:*






shift_interpolation_type
Scope: private KEYWORD



Description: Setting for the interpolating vector field bî (only used for the db formulation)



Range Default: shift
shift
Set bî = betaî (corresponds to d0 formulation)
zero
Set bî = 0 (corresponds to dk formulation)






shift_omega
Scope: private REAL



Description: Rotational shift vector addition about z axis



Range Default: 0.0
*:*






space_offset
Scope: private REAL



Description: Space offset



Range Default: 0.0
*:*






spin
Scope: private REAL



Description: Spin a=J/Mˆ2



Range Default: 0.0
-1:+1






time_offset
Scope: private REAL



Description: Time offset



Range Default: 0.0
*:*






wave_number
Scope: private REAL



Description: Wave number



Range Default: 0.0
*:*






width
Scope: private REAL



Description: Width of the Gaussian



Range Default: 1.0
(0:*






mol_num_evolved_vars
Scope: shared from METHODOFLINESINT



5 Interfaces

General

Implements:

llamawavetoy

Inherits:

grid

coordinates

globalderivative

summationbyparts

interpolate

Grid Variables

5.0.1 PRIVATE GROUPS





  Group Names     Variable Names   Details    




scalar compact 0
u description The scalar of the scalar wave equation fame
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar”
timelevels 2
variable type REAL




density compact 0
rho description Time derivative of u
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar”
timelevels 2
variable type REAL




dx_scalar compact 0
dx_u description Spatial derivatives of u
dy_u dimensions 3
dz_u distribution DEFAULT
group type GF
tags tensortypealias=”scalar”
timelevels 2
variable type REAL




dxx_scalar compact 0
dxx_u description Spatial derivatives of u
dyy_u dimensions 3
dzz_u distribution DEFAULT
dxy_u group type GF
dxz_u tags tensortypealias=”scalar”
dyz_u timelevels 2
variable type REAL




dx_density compact 0
dx_rho description Spatial derivatives of rho
dy_rho dimensions 3
dz_rho distribution DEFAULT
group type GF
tags tensortypealias=”scalar”
timelevels 2
variable type REAL




velocity compact 0
vx description Spatial derivative of u
vy dimensions 3
vz distribution DEFAULT
group type GF
tags tensortypealias=”scalar”
timelevels 2
variable type REAL








  Group Names     Variable Names   Details    




debug compact 0
vxdebug description Spatial derivative of u
vydebug dimensions 3
vzdebug distribution DEFAULT
group type GF
tags tensortypealias=”scalar”
timelevels 1
variable type REAL




scalardot compact 0
udot description RHS of u
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




densitydot compact 0
rhodot description RHS of rho
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




velocitydot compact 0
vxdot description RHS ov v
vydot dimensions 3
vzdot distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




constraints compact 0
wx description Integrability condition
wy dimensions 3
wz distribution DEFAULT
group type GF
tags tensortypealias=”scalar” tensorparity=-1 Prolongation=”None”
timelevels 1
variable type REAL




difference_v compact 0
diff_vx description Difference between v_i and d/dxî u
diff_vy dimensions 3
diff_vz distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL








  Group Names     Variable Names   Details    




velocity_squared compact 0
v2 description Velocity squared
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




scalarenergy compact 0
energy description Energy of the scalar field
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




errors compact 0
error description Error of the solution
error_rho dimensions 3
error_vx distribution DEFAULT
error_vy group type GF
error_vz tags tensortypealias=”scalar” Prolongation=”None”
exact timelevels 1
exact_rho variable type REAL




errorsperiodic compact 0
errorperiodic description Error for a solution which is known to be periodic
errorperiodic_rho dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




metric compact 0
gxx description Spatial background metric
gxy dimensions 3
gxz distribution DEFAULT
gyy group type GF
gyz tags tensortypealias=”scalar” Prolongation=”None”
gzz timelevels 1
variable type REAL




inverse_metric compact 0
guxx description Inverse of the spatial background metric
guxy dimensions 3
guxz distribution DEFAULT
guyy group type GF
guyz tags tensortypealias=”scalar” Prolongation=”None”
guzz timelevels 1
variable type REAL








  Group Names     Variable Names   Details    




lapse compact 0
alpha description Spatial background metric
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




shift compact 0
betax description Spatial background metric
betay dimensions 3
betaz distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




volume_element compact 0
epsilon description Volume element due to the spatial background metric
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




min_spacing min_spacing compact 0
description Minimum grid spacing
dimensions 3
distribution DEFAULT
group type GF
tags tensortypealias=”scalar” Prolongation=”None”
timelevels 1
variable type REAL




6 Schedule

This section lists all the variables which are assigned storage by thorn Llama/LlamaWaveToy. Storage can either last for the duration of the run (Always means that if this thorn is activated storage will be assigned, Conditional means that if this thorn is activated storage will be assigned for the duration of the run if some condition is met), or can be turned on for the duration of a schedule function.

Storage

 

Always:  
scalar[2] density[2] velocity[2]  
dx_scalar[2]  
dxx_scalar[2]  
dx_density[2]  
errors  
metric inverse_metric lapse shift volume_element  
scalardot densitydot velocitydot  
   

Scheduled Functions

CCTK_STARTUP

  lwt_startup

  register banner with cactus

 

  Language: c
  Options: meta
  Type: function

MoL_Register (conditional)

  lwt_register_mol

  register variables with mol

 

  Language: c
  Options: meta
  Type: function

CCTK_ANALYSIS (conditional)

  lwt_calc_rhs

  calculate the rhs

 

  Language: fortran
  Storage: scalardot
    densitydot
    velocitydot
  Sync: scalardot
    densitydot
    velocitydot
  Triggers: scalardot
    densitydot
    velocitydot
  Type: function

CCTK_ANALYSIS

  lwt_calcenergy

  calculate the energy of the scalar field

 

  Language: fortran
  Storage: scalarenergy
  Sync: scalarenergy
  Triggers: scalarenergy
  Type: function

CCTK_ANALYSIS

  lwt_error

  calculate errors of the solution

 

  Language: fortran
  Storage: errorsperiodic
  Triggers: errors
    errorsperiodic
  Type: function

CCTK_ANALYSIS

  lwt_min_spacing

  calculate the smallest grid spacing

 

  Language: fortran
  Storage: min_spacing
  Sync: min_spacing
  Triggers: min_spacing
  Type: function

CCTK_INITIAL

  lwt_init_metric

  initialise the metric

 

  Language: fortran
  Type: function

CCTK_INITIAL

  lwt_calc_inverse_metric

  transform the metric

 

  After: lwt_init_metric
  Language: fortran
  Type: function

CCTK_INITIAL

  lwt_init

  initialise the system

 

  After: lwt_init_metric
  Language: fortran
  Type: function

MoL_CalcRHS

  lwt_calc_rhs

  calculate the rhs

 

  Language: fortran
  Type: function

MoL_PostStep

  lwt_outerboundary

  apply outer boundaries

 

  Language: fortran
  Type: function

MoL_RHSBoundaries

  lwt_rhs_outerboundary

  apply mol rhs outer boundaries (eg. radiative boundary condition)

 

  Language: fortran
  Type: function

MoL_PostStep

  lwt_boundaries

  select the boundary condition

 

  After: lwt_outerbound
  Language: fortran
  Options: level
  Sync: scalar
    density
    velocity
  Type: function

MoL_PostStep

  applybcs

  apply boundary conditions

 

  After: lwt_boundaries
  Type: group

Aliased Functions

 

Alias Name:         Function Name:
ApplyBCs LWT_ApplyBCs