Thorn Guide for the Exact Thorn

Original code by Carsten Gundlach and Miguel Alcubierre,
exact solutions added by many other people,
this documentation by Jonathan Thornburg, and by other people

\( \)Date\( \)

Abstract

This thorn sets up the \(3+1\) ADM variables for any of a number of exact spacetimes/coordinates, and even some non-Einstein spcetimes/coordinates. It’s easy to add more spacetimes/coordinates: all you have to supply is the 4-metric \(g_{ab}\) and the inverse 4-metric \(g^{ab}\) (this thorn automagically calculates all the ADM variables from these). Optionally, any 4-metric can be Lorentz-boosted in any direction. As another option, the ADM variables can be calculated on an arbitrary slice through the spacetime, using arbitrary coordinates on the slice. Given a lapse and shift, the slice can be evolved through the exact solution, in order to check on an evolution code, or in order to test gauge conditions without the need for an evolution code.

1 Introduction

This thorn sets up the ADM variables for any of a number of different spacetimes/coordinates (we call the combination of a spacetime and a coordinate system a model), as specified by the Exact::exact_model parameter.

By default, this thorn sets up the ADM variables on an initial slice only. However, setting
ADMBase::evolution_method = "exact" makes this thorn set up the ADM variables at CCTK_PRESTEP every time step of an evolution, so you get an exact spacetime, not just a single slice.

There is an option to Lorentz-boost any vacuum model (more precisely any model which doesn’t set the stress-energy tensor; see table 1 and section 2 for details) in any direction.

There is also a more general option to set up the ADM variables on an arbitrary slice through the spacetime, using arbitrary coordinates on the slice. Given a lapse and shift computed by some other thorn(s), the slice can be evolved through the exact solution, in order to check on an evolution code, or in order to test gauge conditions without the need for an evolution code. This option is documented in doc/slice_evolver.tex.

This thorn is mainly written in a mixture of Fortran 77 and Fortran 90; a few routines are written in C. At present Fortran 90 is used only for the “arbitrary slice” option (described in the previous paragraph). If this option isn’t needed, then the Fortran 90 code can all be #ifdef-ed out, allowing this thorn to be compiled on a system having only Fortran 77 and C compilers (i.e. no Fortran 90 compiler). This can be done by changing a single line in src/include/Exact.inc; see the comments there for details.

1.1 Models Supported

Table 1 shows the models supported by thorn Exact.1 As a general policy, this thorn includes only cases where the full 4-metric \(g_{ab}\) (and its inverse, although we could dispense with that if needed) is known throughout the spacetime. Cases where this is only known on one specific slice, should live in separate initial data thorns.


Model Name \(T_{\mu \nu }\)?

Description




Minkowski spacetime
"Minkowski"

Minkowski spacetime

"Minkowski/shift"

Minkowski spacetime with time-dependent shift vector

"Minkowski/funny"

Minkowski spacetime in non-trivial spatial coordinates

"Minkowski/gauge wave"

Minkowski spacetime in gauge-wave coordinates

"Minkowski/shifted gauge wave"

Minkowski spacetime in shifted gauge-wave coordinates

"Minkowski/conf wave"

Minkowski spacetime with \(\sin \) in conformal factor

   
Black hole spacetimes
"Schwarzschild/EF"

Schwarzschild spacetime in Eddington-Finkelstein coordinates

"Schwarzschild/PG"

Schwarzschild spacetime in Painlevé-Gullstrand coordinates (these have a flat 3-metric)

"Schwarzschild/BL"

Schwarzschild spacetime in Brill-Lindquist coordinates

"Schwarzschild/Novikov"

Schwarzschild spacetime in Novikov coordinates

"Kerr/Boyer-Lindquist"

Kerr spacetime in Boyer-Lindquist coordinates

"Kerr/Kerr-Schild"

Kerr spacetime in Kerr-Schild coordinates

"Schwarzschild-Lemaitre" Yes

Schwarzschild-Lemaitre spacetime (Schwarzschild black hole with a cosmological constant)

"multi-BH"

Majumdar-Papapetrou or Kastor-Traschen maximally-charged (extreme Reissner-Nordstrom) multi-BH solutions

"Alvi"

Alvi post-Newtonian 2BH spacetime (not fully implemented yet)

"Thorne-fakebinary"

Thorne’s “fake binary” spacetime (non-Einstein)

   
Cosmological spacetimes
"Lemaitre" Yes

Lemaitre-type spacetime

"de Sitter" Yes

de Sitter spacetime

"de Sitter+Lambda" Yes

de Sitter spacetime with cosmological constant

"anti-de Sitter+Lambda" Yes

anti-de Sitter spacetime with cosmological constant

"Bianchi I"

approximate Bianchi type I spacetime

"Goedel"

Gödel spacetime

"Bertotti" Yes

Bertotti spacetime

"Kasner" Yes

Kasner-like spacetime

"Kasner-axisymmetric"

axisymmetric Kasner spacetime

"Kasner-generalized" Yes

generalized Kasner spacetime

"Gowdy-wave"

Gowdy metric (polarized wave in an expanding universe)

"Milne"

Milne spacetime for pre-big-bang cosmology

   
Miscellaneous spacetimes
"boost-rotation symmetric"

boost-rotation symmetric spacetime

"bowl"

bowl (“bag of gold”) spacetime (non-Einstein)

"constant density star" Yes

constant density (Schwarzschild) star


Table 1: This table shows all the models currently supported by thorn Exact. The \(T_{\mu \nu }\) column shows which models set the Cactus stress-energy tensor; as discussed in section 1.3 this includes both all non-vacuum models and all models with a cosmological constant.

1.2 Naming Conventions

This thorn includes many different spacetimes and coordinate systems, so we use the following naming conventions to help keep the different models and parameters clear:

1.3 The Cosmological Constant and the Stress-Energy Tensor

A number of these models have a cosmological constant. To use these with the Cactus code (which generally is written for the case of no cosmological constant), we use a simple trick: we transfer the term with the cosmological constant to the right hand side of the Einstein equations, introducing fictitious “matter” terms in the stress-energy tensor.

This thorn uses the standard Cactus “CalcTmunu” interface for introducing terms into the stress-energy tensor. See Ian Hawke’s documentation for the ADMCoupling thorn for details.

1.4 Accuracy

This thorn has been found to set up its initial data less accurately than you might think. In particular,

Denis Pollney has found that if this thorn is used to set up a Schwarzschild or Kerr solution (Schwarzschild/EF or Kerr/Kerr-Schild model), there are low-level (\(\sim 10^{-12}\)) asymmetries between the field variables in the supposedly-symmetric octants.

Jonathan Thornburg has found that for at least the Schwarzschild/EF and Kerr/Kerr-Schild models (and quite likely for all models), this thorn’s values of the extrinsic curvature \(K_{ij}\) have random point-to-point errors of about \(\sim {\textstyle \frac {1}{2}} \times 10^{-10}\) (in regions where the metric is \(O(1)\).

We suspect that these problems may be due to this thorn’s internally first setting up the 4-metric, then computing the Bona-Masso variables by numerically finite differencing the 4-metric3 , then computing the ADM variables from this.

1.5 Time Levels

In the context of Cactus grid functions with (potentially) multiple time levels, this thorn only sets the initial data on the current time level!. This is a bug. :(

If you’re doing a time evolution using the standard Cactus MoL thorn,

MoL offers a useful option to help work around problems of this sort (only the current time level is set, when you need all time levels): If you set

MoL::initial_data_is_crap = true

then MoL will copy the current time level to all other time levels, for all grid functions that are registered as “evolved”, “save-and-restore”, and/or “constrained” variables. This happens in the POSTINITIAL schedule bin.

1.6 Further Sources of Information

This documentation is at best a secondary source of information about this thorn – the primary sources are the param.ccl file and the source code itself. In particular, much of this documentation was developed by reverse-engineering from these primary sources, so it’s quite possible (indeed even likely!) that there are errors or omissions here. Caveat Lector!

2 Lorentz-Boosting a Spacetime

For any of the models which don’t set the stress-energy tensor (i.e. which are vacuum and have no cosmological constant; see section 1.3 and table 1 for details),4 you can optionally Lorentz-boost the model by a specified 3-velocity \(v^i\). The parameters for this are boost_vx, boost_vy, and boost_vz.

We define the Cactus spacetime coordinates to be \((t,x^i)\), while the model is at rest in coordinates \((T,X^i)\). The model’s “origin” \(X^i = 0\) is located at the Cactus coordinates \(x^i = v^i t\).

The boost Lorentz transformation is defined by \begin {equation} \renewcommand {\arraystretch }{1.333} \begin {array}{lcl} T & = & \gamma (t - \eta _{ij} v^i x^j) \\ X^i_\parallel & = & \gamma (x^i_\parallel - v^i t) \\ X^i_\perp & = & x^i_\perp \end {array} \end {equation} and the inverse transformation by \begin {equation} \renewcommand {\arraystretch }{1.333} \begin {array}{lcl} t & = & \gamma (T + \eta _{ij} v^i X^j) \\ x^i_\parallel & = & \gamma (X^i_\parallel + v^i T) \\ x^i_\perp & = & X^i_\perp \end {array} \end {equation} where \(\gamma \equiv (1 - v^2)^{-1/2}\) is the usual Lorentz factor, \(\eta _{ij}\) is the flat metric, and \(\parallel \) and \(\perp \) refer to the (flat-space) components of \(x^i\) parallel and perpendicular to \(v^i\), respectively.

In more detail, define the unit vector \(n^i = v^i / \sqrt {\eta _{jk} v^j v^k}\) and the (flat-space) projection operators \begin {equation} \renewcommand {\arraystretch }{1.333} \begin {array}{lclcl} \parallel ^i{}\!_j & = & \eta _{jk} n^i n^k \\ & \equiv & n^i n_j \qquad \hbox {(using $\eta _{ij}$ to raise/lower indices)} \\ \perp ^i{}\!_j & = & \delta ^i{}_j - \parallel ^i{}\!_j \end {array} \end {equation} Then the Lorentz transformations are \begin {equation} \renewcommand {\arraystretch }{1.333} \begin {array}{lcl} T & = & \gamma (t - \eta _{ij} v^i x^j) \\ X^i & = & \gamma (\parallel ^i{}\!_j x^j - v^i t) + \perp ^i{}\!_j x^j \end {array} \end {equation} and \begin {equation} \renewcommand {\arraystretch }{1.333} \begin {array}{lcl} t & = & \gamma (T + \eta _{ij} v^i X^j) \\ x & = & \gamma (\parallel ^i{}\!_j X^j + v^i T) + \perp ^i{}\!_j X^j \end {array} \end {equation} so their coordinate partial derivatives for transforming \(g_{ab}\) and \(g^{ab}\) are \begin {equation} \renewcommand {\arraystretch }{2.5} \begin {array}{lcl@{\qquad \qquad \qquad }lcl} \dfrac {\partial T}{\partial t} & = & \gamma & \dfrac {\partial T}{\partial x^j} & = & - \gamma v^j \\ \dfrac {\partial X^i}{\partial t} & = & - \gamma v^i & \dfrac {\partial X^i}{\partial x^j} & = & \gamma \parallel ^i{}\!_j + \perp ^i{}\!_j \end {array} \end {equation} and \begin {equation} \renewcommand {\arraystretch }{2.5} \begin {array}{lcl@{\qquad \qquad \qquad }lcl} \dfrac {\partial t}{\partial T} & = & \gamma & \dfrac {\partial t}{\partial X^j} & = & \gamma v^j \\ \dfrac {\partial x^i}{\partial T} & = & \gamma v^i & \dfrac {\partial x^i}{\partial X^j} & = & \gamma \parallel ^i{}\!_j + \perp ^i{}\!_j \end {array} \end {equation}

3 Minkowski Spacetime

This thorn can set up Minkowski spacetime using several different types of coordinates:

3.1 Minkowski Spacetime

Exact::exact_model = "Minkowski" specifies Minkowski spacetime in the usual Minkowski coordinates: \begin {equation} g_{ab} = \diag \left [ \begin {array}{cccc} -1 & 1 & 1 & 1 \end {array} \right ] \end {equation}

3.2 Minkowski Spacetime in Non-Trivial Spatial coordinates

Exact::exact_model = "Minkowski/funny" specifies Minkowski spacetime with the usual Minkowski time slicing, but using the nontrivial spatial coordinates defined as follows: First take the flat metric in polar spherical coordinates, then define a new radial coordinate by \begin {equation} r = r_{\text {w}} \big (1 - a \Gaussian (r_{\text {w}})\big ) \end {equation} where \(\Gaussian (r) = \exp (-\half r^2/\sigma ^2)\) is a Gaussian centered at \(r=0\).

The parameters are the perturbation amplitude \(a = \verb |Exact::Minkowski_funny__amplitude|\) and the perturbation width \(\sigma = \verb |Exact::Minkowski_funny__sigma|\).

3.3 Minkowski Spacetime in Non-Trivial Slices with Shift

Exact::exact_model = "Minkowski/shift" specifies Minkowski spacetime with the nontrivial time slicing and spatial coordinates defined as follows: First take the flat 4-metric in polar spherical coordinates, then define a new time coordinate by \begin {equation} t_{\text {w}} = t - a \Gaussian (r) \end {equation} \(\Gaussian (r) = \exp (-\half r^2/\sigma ^2)\) is a Gaussian centered at \(r=0\). Note this gives a time-indpendent 4-metric.

The parameters are the perturbation amplitude \(a = \verb |Exact::Minkowski_shift__amplitude|\) and the perturbation width \(\sigma = \verb |Exact::Minkowski_shift__sigma|\).

3.4 Minkowski Spacetime in gauge-wave coordinates

Exact::exact_model = "Minkowski/gauge wave" specifies Minkowski spacetime with the “gauge-wave” coordinates suggested by Carlos Bona: The line element is \begin {equation} ds^2=-H dt^2 +Hdx^2+dy^2+dz^2, \end {equation} where \(H=H(x-t)\), for instance \(H=1-A\sin \left ((x-t)/\Lambda \right )\). This is a flat spacetime, but the slice is a planar wave travelling along the x axis.

This thorn implements several possible choices for the \(H\) function, controlled by the Minkowski_gauge_wave__what_fn parameter:

\begin {eqnarray} H(x-t) &=& 1 - A \sin \left (\frac {x-\omega t}{\Lambda } - \delta \right ) \\ H(x-t) &=& \exp \left (- A \sin \left (\frac {x-\omega t}{\Lambda } - \delta \right )\right ) \\ H(x-t) &=& 1 - A \exp (-x^2) \end {eqnarray}

The parameters are

A plane wave has \(\omega = \pm \lambda \) for a wave that travels in the \(x\) direction, and \(\omega = \pm \lambda \sqrt {2}\) for a diagonal wave.

If the Boolean parameter Minkowski_gauge_wave__diagonal is true, then we make the gauge wave travel diagonally across the grid by the coordinate transformation

\begin {eqnarray} x &=& \frac {1}{\sqrt {2}}(x^\prime - y^\prime ) \\ y &=& \frac {1}{\sqrt {2}}(x^\prime + y^\prime ) \end {eqnarray}

For code testing, the idea is to test evolving this with periodic boundary conditions, to see whether the code is able to cope with that. The tricky part is to make the wave fit the grid exactly (otherwise the periodic boundary wouldn’t make sence), especially in the diagonal case.

3.5 Minkowski Spacetime in shifted gauge-wave coordinates

Exact::exact_model = "Minkowski/shifted gauge wave" specifies Minkowski spacetime with the “shifted gauge-wave” coordinates suggested by Jeff Winicour: The line element is \begin {equation} ds^2 = (H-1)\, dt^2 + (H+1)\, dx^2 - 2H\, dt\, dx + dy^2 + dz^2 \end {equation} where \(H=H(x-t)\), for instance \(H=A\sin \left ((x-t)/\Lambda \right )\). This is a flat spacetime, but the slice is a planar wave travelling along the x axis.

This thorn implements one choice for the \(H\) function, controlled by the Minkowski_gauge_wave__what_fn parameter:

\begin {eqnarray} H(x-t) &=& 1 - A \sin \left (\frac {x-\omega t}{\Lambda } - \delta \right ) \end {eqnarray}

The parameters are

A plane wave has \(\omega = \pm \lambda \) for a wave that travels in the \(x\) direction, and \(\omega = \pm \lambda \sqrt {2}\) for a diagonal wave.

If the Boolean parameter Minkowski_gauge_wave__diagonal is true, then we make the gauge wave travel diagonally across the grid by the coordinate transformation

\begin {eqnarray} x &=& \frac {1}{\sqrt {2}}(x^\prime - y^\prime ) \\ y &=& \frac {1}{\sqrt {2}}(x^\prime + y^\prime ) \end {eqnarray}

For code testing, the idea is to test evolving this with periodic boundary conditions, to see whether the code is able to cope with that. The tricky part is to make the wave fit the grid exactly (otherwise the periodic boundary wouldn’t make sence), especially in the diagonal case.

3.6 Minkowski Spacetime with \(\sin \) term in conformal factor

Exact::exact_model = "Minkowski/conf wave" specifies Minkowski spacetime with a \(\sin \) term in the Cactus static conformal factor. You have three parameters:

These control \(\Psi \) in the following form: \begin {equation} \Psi =a\sin \left (\frac {2\pi }{l}D\right )+1 \end {equation} Here \(D\) is x, y or z according to d of 0, 1 or 2.

Alas, the “arbitrary slice evolver” option (documented in doc/slice_evolver.tex) doesn’t work with this model. There’s no warning, you’ll just silently get wrong results. Sigh…

4 Black Hole Spacetimes

This thorn can set up Schwarzschild and Kerr spacetimes in several different types of coordinates, and also a couple of multiple-black-hole spacetimes:

4.1 Schwarzschild Spacetime in Eddington-Finkelstein coordinates

Exact::exact_model = "Schwarzschild/EF" specifies Schwarzschild spacetime in (ingoing) Eddington-Finkelstein coordinates, as described in MTW box 31.2 and figure 32.1. The only physics parameter is the black hole mass \(m = \verb |Schwarzschild_EF__mass|\).

There is also a numerical parameter Schwarzschild_EF__epsilon which is used to avoid division by zero if a grid point falls exactly at the origin; the default setting should be ok for most purposes.

In the usual polar spherical \((t,r,\theta ,\phi )\) coordinates, the 4-metric and ADM variables are

\begin {eqnarray} g_{ab} & = & \left [ \begin {array}{cccc} - \left ( 1 - \frac {2m}{r} \right ) & \frac {2m}{r} & 0 & 0 \\ \frac {2m}{r} & 1 + \frac {2m}{r} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin ^2 \theta \end {array} \right ] \\ g_{ij} & = & \diag \left [ \begin {array}{ccc} 1 + \frac {2m}{r} & r^2 & r^2 \sin ^2 \theta \end {array} \right ] \\ K_{ij} & = & \diag \left [ \begin {array}{ccc} - \frac {2m^2}{r^2} \frac {1 + \frac {m}{r}} {\sqrt {1 + \frac {2m}{r}}} & \frac {2m^2}{\sqrt {1 + \frac {2m}{r}}} & \frac {2m^2}{\sqrt {1 + \frac {2m}{r}}} \sin ^2 \theta \end {array} \right ] \\ \alpha & = & \frac {1}{\sqrt {1 + \frac {2m}{r}}} \\ \beta ^i & = & \left [ \begin {array}{ccc} \frac {2m}{r} \frac {1}{\sqrt {1 + \frac {2m}{r}}} & 0 & 0 \end {array} \right ] \end {eqnarray}

(Various other \(3+1\) variables for Schwarzschild spacetime in these coordinates are tabulated in appendix 2 of Jonathan Thornburg’s Ph.D thesis, http://www.aei.mpg.de/~jthorn/phd/html/phd.html.)

In the Cactus \((t,x,y,z)\) Cartesian-topology coordinates the 4-metric is \begin {equation} g_{ab} = \left [ \begin {array}{cccc} - \left ( 1 - \frac {2m}{r} \right ) & \frac {2m}{r} \frac {x}{r} & \frac {2m}{r} \frac {y}{r} & \frac {2m}{r} \frac {z}{r} \\ \frac {2m}{r} \frac {x}{r} & 1 + \frac {2m}{r} \frac {x^2}{r^2} & \frac {2m}{r} \frac {xy}{r^2} & \frac {2m}{r} \frac {xz}{r^2} \\ \frac {2m}{r} \frac {y}{r} & \frac {2m}{r} \frac {xy}{r^2} & 1 + \frac {2m}{r} \frac {y^2}{r^2} & \frac {2m}{r} \frac {yz}{r^2} \\ \frac {2m}{r} \frac {z}{r} & \frac {2m}{r} \frac {xz}{r^2} & \frac {2m}{r} \frac {yz}{r^2} & 1 + \frac {2m}{r} \frac {z^2}{r^2} \end {array} \right ] \end {equation}

4.2 Schwarzschild spacetime in Painlevé-Gullstrand coordinates

Exact::exact_model = "Schwarzschild/PG" specifies Schwarzschild spacetime in Painlevé-Gullstrand coordinates, as described by Martel and Poisson, gr-qc/0001069. These coordinates have the interesting property that the spatial metric is flat. The only physics parameter is the black hole mass \(m = \verb |Schwarzschild_PG__mass|\).

There is also a numerical parameter Schwarzschild_PG__epsilon which is used to avoid division by zero if a grid point falls exactly at the origin; the default setting should be ok for most purposes.

In the usual Cactus \((t,x,y,z)\) Cartesian-topology coordinates, the 4-metric is \begin {equation} g_{ab} = \left [ \begin {array}{cccc} -1 + \frac {2m}{r} & \sqrt {\frac {2m}{r}} \frac {x}{r} & \sqrt {\frac {2m}{r}} \frac {y}{r} & \sqrt {\frac {2m}{r}} \frac {z}{r} \\ \sqrt {\frac {2m}{r}} \frac {x}{r} & 1 & 0 & 0 \\ \sqrt {\frac {2m}{r}} \frac {y}{r} & 0 & 1 & 0 \\ \sqrt {\frac {2m}{r}} \frac {z}{r} & 0 & 0 & 1 \end {array} \right ] \end {equation}

4.3 Schwarzschild spacetime in Brill–Lindquist coordinates

Exact::exact_model = "Schwarzschild/BL" specifies Schwarzschild spacetime in Brill–Lindquist coordinates. These coordinates have the interesting property that the spatial metric is conformally flat and time-symmetric for the initial data. The only physics parameter is the black hole mass \(m = \verb |Schwarzschild_BL__mass|\).

There is also a numerical parameter Schwarzschild_BL__epsilon which is used to avoid division by zero if a grid point falls exactly at the origin; the default setting should be ok for most purposes.

In the usual Cactus \((t,x,y,z)\) Cartesian-topology coordinates, the 4-metric is given by

\begin {eqnarray} \alpha & = & 1 \\ \beta ^i & = & 0 \\ \gamma _{ij} & = & \Psi ^4\, \delta _{ij} \end {eqnarray}

with the conformal factor

\begin {eqnarray} \Psi & = & 1 + \frac {m}{2r} \end {eqnarray}

where \(r\) is the coordinate radius.

4.4 Schwarzschild Spacetime in Novikov coordinates

Exact::exact_model = "Novikov" specifies the unit-mass Schwarzschild spacetime in Novikov coordinates, as described in gr-qc/9608050 (see also MTW section 31.4 and figure 31.2). The only physics parameter is the black hole mass \(m = \verb |Schwarzschild_Novikov__mass|\).

There is also a numerical parameter Schwarzschild_Novikov__epsilon which is used to avoid division by zero if a grid point falls exactly at the origin; the default setting should be ok for most purposes.

4.5 Kerr Spacetime in Boyer-Lindquist coordinates

Exact::exact_model = "Kerr/Boyer-Lindquist" specifies Kerr spacetime in (cartesian) Boyer-Lindquist coordinates, as described in MTW box 33.2 (the spin axis is the \(z\) axis). The physics parameters are the black hole mass \(m = \verb |Kerr_BoyerLindquist__mass|\), and the dimensionless spin parameter \(a = J/m^2 = \verb |Kerr_BoyerLindquist__spin|\).

Mitica Vulcanov says: this metric still need some work in order to run properly. Major problems: the convergence and calibration of the units for the parameters and variables.

4.6 Kerr-Schild form of Boosted Rotating Black Hole

Exact::exact_model = "Kerr/Kerr-Schild" specifies Kerr spacetime in Kerr-Schild coordinates, as described in MTW exercise 33.8 (the spin axis is the \(z\) axis), Lorentz boosted in the \(z\) direction so the black hole is centered at the position \(z = vt\). The physics parameters are the black hole mass \(m = \verb |Kerr_KerrSchild__mass|\), the dimensionless spin parameter \(a = J/m^2 = \verb |Kerr_KerrSchild__spin|\), and the boost velocity \(v = \verb |Kerr_KerrSchild__boost_v|\).

There is also a numerical parameter Kerr_KerrSchild__epsilon which is used to avoid division by zero if a grid point falls exactly at the black hole center; the default setting should be ok for most purposes.

Kerr-Schild coordinates use the same time slicing (n.b. non-maximal!) and \(z\) spatial coordinate as Kerr coordinates \((x_K, y_K, z_K)\), but define new spatial coordinates \(x \equiv x_{KS}\) and \(y \equiv y_{KS}\) by \begin {equation} x_{KS} + iy_{KS} = (r + ia) e^{i\phi } \sin \theta \end {equation} so that

\begin {eqnarray} x_{KS} & = & x_K - a \sin \theta \sin \phi \\ y_{KS} & = & y_K + a \sin \theta \cos \phi \end {eqnarray}

In Kerr-Schild coordinates the 4-metric can be written \begin {equation} g_{ab} = \eta _{ab} + 2 H k_a k_b \end {equation} where \begin {equation} H = \frac {mr}{r^2 + a^2z^2/r^2} \end {equation} and where \begin {equation} k^a = - \frac {r(x\,dx + y\,dy) - a(x\,dy - y\,dx)}{r^2 + a^2} - \frac {z\,dz}{r} - dt \end {equation} is a null vector.

4.7 Schwarzschild-Lemaitre spacetime (Schwarzschild black hole with cosmological constant

Exact::exact_model = "Schwarzschild/Lemaitre"is a metric proposed by Lemaitre in 1932 as a version of the Schwarzschild solution in a universe with cosmological constant. For a history of this metric and a good review see the chapter of Jean Eisenstaedt, “Lemaitre and the Schwarzschild solution” in the book “The attraction of Gravitation: New Studies in the History of General Relativity”, by J. Earman, et.al. Birkäuser, 1993. The line element is \begin {equation} ds^2 = - \left ( 1-\frac {2m}{r} - \frac {\Lambda }{3}r^2\right ) \, dt^2 + \left ( 1-\frac {2m}{r} -\frac {\Lambda }{3}r^2 \right )^{-1} \, dr^2 + r^2 \, d\theta ^2 + r^2 \sin (\theta )^2 \, d\phi ^2 \end {equation} Notice that for \(\Lambda = 0\) this reduces to Schwarzschild spacetime in the usual Schwarzschild coordinates.

The physics parameters are the black hole mass \(m = \verb |Schwarzschild_Lemaitre__mass|\), and the cosmological constant \(\Lambda = \verb |Schwarzschild_Lemaitre__Lambda|\).

The fictitious “matter” stress-energy tensor representing \(\Lambda \) is \begin {equation} T_{ij}= - \frac {\Lambda }{8 \pi } g_{ij} = \left ( \begin {array}{cccc} -\frac {1}{24}\frac {\Lambda A}{r\pi } & 0 & 0 & 0\\ 0 & \frac {3}{8}\frac {r\Lambda }{8\pi A }& 0 & 0\\ 0 & 0 &-\frac {1}{8}\frac {\Lambda r^2}{\pi }& 0\\ 0 & 0 & 0 & -\frac {1}{8}\frac {\Lambda r^2 \sin (\theta )^2}{\pi } \end {array} \right ) \end {equation} where \(A = (-3r +6m+\Lambda r^3)\).

Alas, this metric doesn’t seem to give proper finite difference convergence for \(\Lambda \ne 0\). It works fine for \(\Lambda = 0\).

4.8 Majumdar-Papapetrou or Kastor-Traschen Maximally-Charged (extreme Reissner-Nordstrom) multi-BH Solutions

Exact::exact_model = "multi-BH" specifies the Majumdar-Papapetrou or Kastor-Traschen solution. The file KTsol.tex in the documentation directory of this thorn gives more details/references about these solutions.

The Majumdar-Papapetrou solution is a multi-black-hole static solution to Einstein’s equation, containing \(N\) maximally charged (\(Q=M\), i.e. extreme Reissner-Nordstrom) black holes. The balance between gravitational attraction and electrostatic repulsion among the black holes causes each to maintain its position relative to the others eternally, so the spacetime is static. (The Majumdar-Papapetrou solution somewhat resembles Brill-Lindquist initial data, but with the black holes being charged.) The line element is \begin {equation} ds^2=-\frac {1}{\Omega ^2} dt^2+ \Omega ^2(dx^2+dy^2+dz^2) \end {equation} where

\begin {eqnarray} \Omega &=& 1+\sum _{i=1}^N \frac {M_i}{r_i} \\ r_i &=& \sqrt {(x-x_i)^2+(y-y_i)^2+(z-z_i)^2} \end {eqnarray}

where \(M_i\) and \((x_i, y_i, z_i) \in \Re ^3\) are the masses and locations of the individual black holes.

The Kastor-Traschen solution is a cosmological generalization of the Majumdar-Papapetrou solution, where there is a cosmological constant and the black holes participate in an overall De Sitter expansion or contraction. For \(\Lambda = 0\) the Kastor-Traschen solution reduces to the Majumdar-Papapetrou solution.

The Kastor-Traschen line element is \begin {equation} ds^2=-\frac {1}{\Omega ^2} dt^2+a(t)^2 \Omega ^2(dx^2+dy^2+dz^2) \end {equation} where

\begin {eqnarray} \Omega &=& 1+\sum _{i=1}^N {\frac {M_i}{a r_i}} \\ a &=& e^{Ht} \\ H &=& \pm \sqrt {\frac {\Lambda }{3}} \\ r_i &=& \sqrt {(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2} \end {eqnarray}

This solution represents “incoming” (“outgoing”) charged BHs if \(H < 0\) (\(H > 0\)). We interpret \(M_i\) as the mass of the \(i{\rm th}\) black hole, although we have neither an asymptotically flat region nor event horizons available to convert this naive interpretation into a rigorous one.

This thorn supports up to 4 black holes. The physics parameters are the number of black holes \(N = \verb |multi_BH__nBH|\) and the Hubble constant \(H = \verb |multi_BH__Hubble|\), and then for each black hole \(i = 1, \dots , N\), the mass \(m_i = \verb |multi_BH__mass|\,i\) and the \(x\), \(y\), and \(z\) positions \(x_i = \verb |multi_BH__x|\,i\), \(y_i = \verb |multi_BH__y|\,i\), and \(z_i = \verb |multi_BH__z|\,i\) respectively.

Note that this thorn does not set \(T_{\mu \nu }\). FIXME: does treating this metric as vacuum still give a solution to the Einstein equations?

4.9 Alvi post-Newtonian 2BH spacetime (not fully implemented yet)

Exact::exact_model = "Alvi" specifies the Alvi post-Newtonian binary black hole metric, as described in gr-qc/9912113. This uses different approxamintion methods to describe different regions of a binary black hole system: Near the holes, one uses a distorted Schwarzschild black hole metric, while in the region around them (divided into a near zone and a wave zone) one uses a 1st order post-Newtonian approximation. There are discontinuities at the boundaries between the zones.

This model has physics parameters giving the masses of the two black holes, \(m_1 = \verb |Alvi__mass1|\) and \(m_2 = \verb |Alvi__mass2|\), and their spatial separation \(b = \verb |Alvi__separation|\).

Unfortunately, this metric isn’t fully implemented yet. See Nina Jansen for details.

4.10 Thorne’s “Fake Binary” Approximate Spacetime

Exact::exact_model = "fakebinary" specifies Thorne’s “fake binary” approximate binary-black-hole spacetime, as described in gr-qc/9808024. This is not an exact solution of the Einstein equations, but has qualitative features designed to mimic those of an inspiralling binary black hole spacetime. The physics parameters are:

There is also a numerical parameter Thorne_fakebinary__epsilon which is used to avoid division by zero if a grid point falls exactly at either black hole’s center; the default setting should be ok for most purposes.

5 Cosmological Spacetimes

The code for most of these models was written by Mitica Vulcanov <vulcan@aei.mpg.de>.

5.1 Lemaitre-type spacetime

Exact::exact_model="Lemaitre" specifies a Lemairre spacetime, version of the Friedmann-Robertson-Walker model with flat space (i.e. \(k=0\)), possibly a cosmological constant, \(\Lambda \), and a linear dependence between the energy density \(\epsilon \) and the pressure, \(p\), namely \(p=\kappa \epsilon \). Thus the metric is the Robertson-Walker metric with \(k =0\) and (see gr-qc/0110030, astro-ph/9910093 and references cited here), \begin {equation} R(t) = R_0 \left [ \cosh \left (\frac {\sqrt {3\Lambda }}{2}(\kappa +1) t \right ) + \sqrt {1+\frac {8\pi G\,\epsilon _{0}}{\Lambda }} \sinh \left ( \frac {\sqrt {3\Lambda }}{2}(\kappa +1) t \right ) \right ]^{2/3(\kappa +1)} \end {equation} where \(R_0\) is the scale factor of the universe (“radius”) at \(t=0\); the density of energy reads \begin {equation} \relax \expandafter \ifx \csname cur:th\endcsname \relax \expandafter \:label \else \expandafter \l:bel \fi {dens} \epsilon (t)=\epsilon _0\,a(t)^{-3(\kappa +1)}\,. \end {equation} The stress-enegy tensor is one of a perfect fluid, \begin {equation} T_{\mu }^{\nu }=(\epsilon +p)u^{\nu }u_{\mu }-p \delta _{\mu }^{\nu }\,, \end {equation} which depends on the covariant four-velocity \(u^{\mu }=dx^{\mu }/ds\) (remember \(p=\kappa \epsilon \)).

The physics parameters are the equation of state parameter \(\kappa = \verb |Lemaitre__kappa|\), the cosmological constant \(\Lambda = \verb |Lemaitre__Lambda|\), the energy density of the universe at time \(t = 0\), \(\epsilon _0 = \verb |Lemaitre__epsilon0|\), and the scale factor (radius) of the universe at time \(t = 0\), \(R_0 = \verb |Lemaitre__R0|\).

5.2 de Sitter spacetime

Exact::exact_model = "de Sitter" specifies an Einstein-de Sitter spacetime (a zero-pressure spatially-flat Robertson-Walker spacetime), as described in Hawking and Ellis section 5.3 and MTW section 27.11 (see also gr-qc/0110031 for some tests of Cactus with this model). The only physics parameter is the multiplicative scale factor \(a = \verb |de_Sitter__scale|\).

The Einstein-De Sitter spacetime is the special case \(R(t) = \sqrt {a}\,t^{2/3}\), \(k = 0\) of the more general Robertson-Walker spacetime, so the line element in \((t,r,\theta ,\phi )\) coordinates is \begin {equation} ds^2 = -dt^2 + a t^{4/3} \left [ dr^2 + r^2 \, d\Omega ^2 \right ] \end {equation} The only non-vanishing component of the stress-energy tensor is \begin {equation} T_{tt} = \frac {1}{6 \pi t^2} \end {equation} This is properly set up by this thorn.

5.3 de Sitter spacetime with cosmological constant

Exact::exact_model="de Sitter+Lambda" specifies an Einstein-de Sitter spacetime with a cosmological constant, with the line element \begin {equation} ds^2 = - dt^2 + e^{2/3\sqrt {3\Lambda }t} \left ( dx^2 + dy^2 + dz^2 \right ) \end {equation} where \(\Lambda \) is the cosmological constant. FIXME: how is \(\Lambda \) determined?

The only physics parameter is the multiplicative scale factor \(a = \verb |de_Sitter_Lambda__scale|\).

The fictitious “matter” stress-energy tensor representing \(\Lambda \) is \begin {equation} T_{ij}= - \frac {\Lambda }{8 \pi } g_{ij} = \left ( \begin {array}{cccc} \frac {1}{8}\frac {\Lambda }{\pi } & 0 & 0 & 0\\ 0 & -\frac {1}{8}\frac {\Lambda e^{2/3 \sqrt {3\Lambda }t}}{\pi }& 0 & 0\\ 0 & 0 &-\frac {1}{8}\frac {\Lambda e^{2/3 \sqrt {3\Lambda }t}}{\pi }& 0\\ 0 & 0 & 0 & -\frac {1}{8}\frac {\Lambda e^{2/3 \sqrt {3\Lambda }t}}{\pi }\end {array}\right ) \, \end {equation}

5.4 anti-de Sitter spacetime with cosmological constant

Exact::exact_model="anti-de Sitter+Lambda" specifies an anti-de Sitter spacetime with a cosmological constant, with the line element \begin {equation} ds^2 = dx^2 + e^{2/3\sqrt {-3\Lambda }t} \left ( -dt^2 + dy^2 + dz^2 \right ) \end {equation} FIXME: how is \(\Lambda \) determined?

The only physics parameter is the multiplicative scale factor \(a = \verb |anti_de_Sitter_Lambda__scale|\).

5.5 Approximate Bianchi type I spacetime

Exact::exact_model = "Bianchi I" specifies an approximation to a Bianchi type I spacetime, setting the spacetime metric components as harmonic functions. Thus this is not a proper solution of Einstein equations. The only physics parameter is the multiplicative scale factor \(a = \verb |Bianchi_I__scale|\).

This solution doesn’t work properly yet. See Mitica Vulcanov for further information.

5.6 Gödel spacetime

Exact::exact_model = "Goedel" specifies a Gödel spacetime, as described in Hawking and Ellis section 5.7. The only physics parameter is the multiplicative scale factor \(a = \verb |Goedel__scale|\).

At present this thorn doesn’t set up the stress-energy tensor; you have to do this “by hand”.

This solution doesn’t work properly yet. See Mitica Vulcanov for further information.

5.7 Bertotti spacetime

Exact::exact_model = "Bertotti" specifies a Bertotti spacetime. This a spacetime metric with cosmological constant (see Gravitation and Geometry by Rindler and Trautman, Bibliopolis, Napoli, 1987, page 309), with the line element \begin {equation} ds^2 = -e^{2\sqrt {-\Lambda }x}dt^2 +dx^2 + e^{2\sqrt {-\Lambda }z}du^2 + dz^2 \end {equation} The only physics parameter is the cosmological constant \(\Lambda = \verb |Bertotti__Lambda|\).

The fictitious “matter” stress-energy tensor representing \(\Lambda \) is \begin {equation} T_{ij}= - \frac {\Lambda }{8 \pi } g_{ij} = \left ( \begin {array}{cccc} \frac {1}{8}\frac {\Lambda e^{2\sqrt {-\Lambda } x}}{\pi } & 0 & 0 & 0\\ 0 & -\frac {1}{8}\frac {\Lambda }{\pi }& 0 & 0\\ 0 & 0 &-\frac {1}{8}\frac {\Lambda e^{2\sqrt {-\Lambda }z}}{\pi }& 0\\ 0 & 0 & 0 & -\frac {1}{8}\frac {\Lambda }{\pi }\end {array}\right ) \, \end {equation}

Mitica Vulcanov says: This metric is not working properly. We suspect that it is not a solution of the vacuum Einstein equations with cosmological constant, thus somebody else can try to calculate properly the above components of the \(T_{ij}\) - ask Mitica D.N. Vulcanov for more details.

5.8 Kasner-like spacetime

Exact::exact_model="Kasner-like" is the so-called “Kasner-like” metric, as described in L. Pimentel, Int. Journ. of Theor. Physics, 32, No. 6, p. 979, (1993) and the references cited here. (See also MTW section 30.2, gr-qc/0110031, and S. Gotlober et al., “Early Evolution of the Universe and Formation [of] Structure”, Akad. Verlag, 1990.) The Kasner-like line element is \begin {equation} ds^2 = -dt^2 + t^{2q} (dx^2 +dy^2) + t^{2 - 4q}dz^2 \end {equation} Here we have a stress-energy tensor which has all off-diagonal components vanishing:

\begin {eqnarray} T_{ij} = \left ( \begin {array}{cccc} q\frac {(2-3 q)}{8 \pi t^2} & 0 & 0 & 0 \\ 0 & q\frac {(2-3 q)t^{2q}}{8 \pi t^2} & 0 & 0\\ 0 & 0 & q\frac {(2-3 q)t^{2q}}{8 \pi t^2} & 0\\ 0 & 0 & 0 & q\frac {(2-3q)t^{2-4q}}{8 \pi t^2}\end {array} \right ) \end {eqnarray}

There is one parameter \(q = \verb |Kasner_like__q|\).

This metric forms a one parameter family of solutions of Einstein’s equations with a perfect stiff fluid. The parameter \(q\) is related to the energy density, as is obvious from the last equation. The qualitative features of the expansion depend on \(q\) in the following way: for \(q > 1/2\) the universe expands from a “cigar” singularity; for \(q = 1/2\), the universe expands purely transversally from an initial “barrel” singularity; for \(0 < q < 1/2\) the initial singularity is “point-like” and if \(q \leq 0\) we have a “pancake” singularity. The case \(q=1/3\) corresponds to an isotropic universe with a stiff fluid; the case \(q=0\) is a region of Minkowski spacetime in non-Cartesian coordinates. This family of metrics is “Kasner-like” in the sense that the sum of the exponents is equal to one, but the sum of the squares is not equal to one except in the cases when \(q=0\) or \(q=2/3\), when we have the vacuum case.

5.9 axisymmetric Kasner spacetime

Exact::exact_model="Kasner-axisymmetric" specifies an axisymmetric Kasner spacetime, as described in S. D. Hern, Numerical Relativity and Inhomogeneous Cosmologies, PhD thesis, Cambridge (gr-qc/0004036), and S. D. Hern, J. M. Stewart, Class. Quantum Grav, 15, 1581, (1998). The line element is \begin {equation} ds^2 = -\frac {dt^2}{\sqrt {t}} + \frac {dx^2}{\sqrt {t}} + t dy^2 + t dz^2 \end {equation} This is an exact solution of the vacuum Einstein equations, explicitly homogeneous, and features a cosmological singularity at \(t=0\).

There are no parameters for this model.

5.10 generalized Kasner spacetime

Exact::exact_model="Kasner-generalized" specifies a generalized Kasner spacetime, as described in MTW section 30.2, where the line element is \begin {equation} ds^2 = -dt^2 +t^{2p_1}dx^2 + t^{2p_2}dy^2 + t^{2p_3}dz^2 \end {equation} The Kasner parameters \(p_1\), \(p_2\) and \(p_3\) must satisfy the relations \(p_1+p_2+p_3 = 1\) and \(p_1^2+p_2^2+p_3^2 = 1\). Restricting ourselves only to two parameters, \(p_1\) and \(p_2\), we have the following stress-energy tensor: \begin {equation} T_{ij} = \left ( \begin {array}{cccc} \frac {A}{8\pi t^2} & 0 & 0 & 0\\ 0 & \frac {A t^{2p_1-2}}{8 \pi } & 0 & 0\\ 0 & 0 & \frac {A t^{2p_2-2}}{8\pi } & 0 \\ 0 & 0 & 0 & \frac {A t^{-2p_1-2p_2}}{8 \pi }\end {array} \right ) \end {equation} where \(A = p_1 - p_1^2 +p_2 - p_2^2 - p_1 p_2\) (note the use of the above first condition on the parameters, thus we have \(p_3 = 1-p_1-p_2\)).

The parameters are \(p_1 = \verb |Kasner_generalized__p1|\) and \(p_2 = \verb |Kasner_generalized__p2|\).

Mitica Vulcanov has done several simulations with various Kasner spacetimes, see gr-qc/0110031.

5.11 Gowdy-wave Spacetime

Exact::exact_model = "Gowdy-wave" specifies a Gowdy spacetime, which gives a polarized wave in an expanding universe. See K. New, K. Watt, C. W. Misner, and J. Centrella, “Stable 3-level leapfrog integration in numerical relativity”, PRD 58, 064022.

There is only a single parameter, the wave amplitude Gowdy_wave__amplitude.

5.12 Milne Spacetime for Pre-Big-Bang Cosmology

Exact::exact_model = "Milne" specifies a Milne spacetime, as described by gr-qc/9802001 (see in particular reference 14, which in turn points to Zeldovich and Novikov volume 2 section 2.4): \begin {equation} g_{ab} = \left [ \begin {array}{cccc} -1 & 0 & 0 & 0 \\ 0 & V(1+y^2+z^2) & -Vxy & -Vxz \\ 0 & -Vxy & V(1+x^2+z^2) & -Vyz \\ 0 & -Vxz & -Vyz & V(1+x^2+y^2) \end {array} \right ] \end {equation} where \begin {equation} V = \frac {t^2}{1 + x^2 + y^2 + z^2} \end {equation}

The \(g_{ab}\) given here is indeed what the code computes, but alas noone seems to know whether this is indeed a Milne spacetime.

6 Miscellaneous Spacetimes

6.1 Boost Rotation Symmetric Spacetime

Exact::exactmodel = "starSchwarz" specifies a boost-rotation symmetric spacetime, as described in Jiri Bicak and Bernd Schmidt, ”Asymptotically flat radiative space-times with boost-rotation symmetry”, Physical Review D 40, 1827 (1989). Pravda and Pravdová, gr-qc/0003067, give a general review of boost-rotation symmetric spacetimes.

FIXME: the parameters are …

6.2 Schwarzschild (Constant Density) Star

Exact::exact_model = "constant density star" specifies a constant-density “Schwarzschild” star, as described in MTW Box 23.2. The stress-energy tensor is also properly set up.

The parameters are the star’s mass constant_density_star__mass and its radius constant_density_star__radius.

6.3 Non-Einstein Bowl (“Bag of Gold”) Spacetime

Exact::exact_model = "bowl" specifies a “bag of Gold” metric, as described in gr-qc/9809004. This is useful for testing purposes, but isn’t a solution of the Einstein equations. The line element in \((t,r,\theta ,\phi )\) coordinates is \begin {equation} ds^2 = -dt^2 + dr^2 + R^2(r) \, d\Omega ^2 \end {equation}

We choose \(R(r)\) such that \(\displaystyle \lim _{r \ll 1} R(r) = r\) and \(\displaystyle \lim _{r \gg 1} R(r) = r\), so we have a flat 3-metric (and hence 4-metric too) for very small \(r\) and for very large \(r\). For intermediate values of \(r\), we take \(0 < R(r) < r\); this deficit in areal radius produces the “bag of gold” geometry.

The physics parameters are

The size of the deviation from a flat geometry is controled by the parameter \(a = \verb |bowl__strength|\). If \(a = 0\), we are in flat spacetime. The width of the curved region is controled by \(\sigma = \verb |bowl__sigma|\), and the place where the curvature becomes significant (the center of the deformation) is controlled by \(c = \verb |bowl__center|\).

In detail, we choose \begin {equation} R(r) = r - A f(r) g(r) \end {equation} Here \(A = a\) if bowl_evolve = "false", but is multiplied by a Fermi factor \begin {equation} A = \frac {a}{1 + \exp (-\sigma _t(t-t_0))} \end {equation} if bowl_evolve = "true". For this latter case we have flat spacetime far in the past, and a static bowl far in the future. \(f(r)\) is either a Gaussian or a Fermi function, \begin {equation} f(r) = \left \{ \begin {array}{ll} \displaystyle \exp \big ( (r-c)^2/\sigma ^2 \big ) & \hbox {if {\tt bowl\_type = "Gaussian"}} \\[1ex] \displaystyle \frac {1}{1 + \exp (-\sigma (r-c))} & \hbox {if {\tt bowl\_type = "Fermi"}} \end {array} \right . \end {equation} \(g(r) = 1 - \sech 4r\) is a fixup factor to ensure that \(\displaystyle \lim _{r \to 0} R(r) = r\).

The three paramters bowl__x_scale, bowl__y_scale, and bowl__z_scale scale the \((x,y,z)\) axes respectively. Their default values are all 1. These parameters are useful to hide the spherical symmetry of the metric.

7 Acknowledgments

The original code, including the boost-rotation symmetric metric and the slice evolver, was written by Carsten Gundlach and Miguel Alcubierre. Many different people have contributed exact solutions. The Schwarzschild/Lemaitre solution and most (all?) of the cosmological solutions were written by Mitica Vulcanov. The Minkowski/gauge wave model was written by Michael Koppitz. In May-June 2002 Jonathan Thornburg cleaned up a lot of the code, systematized the spacetime/coordinate and parameter names, and wrote most of this documentation (based on the comments in the code, some reverse-engineering, and querying various people about how the code works.) The description of the Kastor-Traschen maximally charged multi-BH model is adapted from the file KTsol.tex in this same directory, by Hisa-aki Shinkai. The Gowdy model was written by Denis Pollney. The ADMBase::evolution_method = "exact" code was written by Peter Diener. The “boost any vacuum solution” code was written by Jonathan Thornburg.

8 Parameters




boost_vx
Scope: private REAL



Description: x component of boost velocity



Range Default: 0.0
*:*
any real number






boost_vy
Scope: private REAL



Description: y component of boost velocity



Range Default: 0.0
*:*
any real number






boost_vz
Scope: private REAL



Description: z component of boost velocity



Range Default: 0.0
*:*
any real number






exact_eps
Scope: private REAL



Description: finite differencing stencil size



Range Default: 1.0e-6
(0.0:*
Positive please






exact_order
Scope: private INT



Description: finite differencing order



Range Default: 2
2
2
4
4






exblend_gauge
Scope: private BOOLEAN



Description: Blend the lapse and shift with the exact solution?



Default: yes






exblend_gs
Scope: private BOOLEAN



Description: Blend the g variables with the exact solution?



Default: yes






exblend_ks
Scope: private BOOLEAN



Description: Blend the K variables with the exact solution?



Default: yes






exblend_rout
Scope: private REAL



Description: Outer boundary of blending region



Range Default: -1.0
*:*
Positive means radial value, negative means use outer bound of grid






exblend_width
Scope: private REAL



Description: Width of blending zone



Range Default: -3.0
*:*
Positive means width in radius, negative means width = exbeldn_width*dx






overwrite_boundary
Scope: private KEYWORD



Description: Overwrite g and K on the boundary



Range Default: no
no
Do nothing
exact
Use boundary data from an exact solution on a trivial slice






rotation_euler_phi
Scope: private REAL



Description: Euler angle phi (first rotation, about z axis) (irrelevant for axisymmetric models)



Range Default: 0.0
*:*
any real number






rotation_euler_psi
Scope: private REAL



Description: Euler angle psi (third rotation, about z axis)



Range Default: 0.0
*:*
any real number






rotation_euler_theta
Scope: private REAL



Description: Euler angle theta (second rotation, about x axis)



Range Default: 0.0
*:*
any real number






shift_add_x
Scope: private REAL



Description: x component of added shift



Range Default: 0.0
*:*
any real number






shift_add_y
Scope: private REAL



Description: y component of added shift



Range Default: 0.0
*:*
any real number






shift_add_z
Scope: private REAL



Description: z component of added shift



Range Default: 0.0
*:*
any real number






slice_gauss_ampl
Scope: private REAL



Description: Amplitude of Gauss slice in exact



Range Default: 0.0
0.0:*
Positive please






slice_gauss_width
Scope: private REAL



Description: Width of Gauss slice in exact



Range Default: 1.0
0.0:*
Positive please






alvi__mass1
Scope: restricted REAL



Description: Alvi: mass of BH number 1



Range Default: 1.0
0.0:*
any real number >= 0






alvi__mass2
Scope: restricted REAL



Description: Alvi: mass of BH number 2



Range Default: 1.0
0.0:*
any real number >= 0






alvi__separation
Scope: restricted REAL



Description: Alvi: spatial separation of the black holes



Range Default: 20.0
0.0:*
must be greater than m1+m2 + 2 sqrt(m1 m2)






anti_de_sitter_lambda__scale
Scope: restricted REAL



Description: anti-de Sitter+Lambda: multiplicative scale factor



Range Default: 0.1
(0.0:*
any positive real number






bertotti__lambda
Scope: restricted REAL



Description: Bertotti: cosmological constant



Range Default: -1.0
*:*
any real number






bianchi_i__scale
Scope: restricted REAL



Description: Bianchi I: multiplicative scale factor



Range Default: 0.1
(0.0:*
any positive real number






boost_rotation_symmetric__amp
Scope: restricted REAL



Description: boost-rotation symmetric: dimensionless amplitude



Range Default: 0.1
0.0:*
Positive please






boost_rotation_symmetric__min_d
Scope: restricted REAL



Description: boost-rotation symmetric: dimensionless safety distance



Range Default: 0.01
(0.0:*
any positive real number






boost_rotation_symmetric__scale
Scope: restricted REAL



Description: boost-rotation symmetric: length scale



Range Default: 1.0
0.0:*
Positive please






bowl__center
Scope: restricted REAL



Description: bowl: deformation center



Range Default: 2.5
(0.0:*
any positive real number






bowl__evolve
Scope: restricted BOOLEAN



Description: bowl: are we evolving the metric?



Default: false






bowl__shape
Scope: restricted KEYWORD



Description: bowl: what shape of bowl should we use?



Range Default: Gaussian
Gaussian
Gaussian bowl
Fermi
Fermi-function bowl






bowl__sigma
Scope: restricted REAL



Description: bowl: width of deformation



Range Default: 1.0
(0.0:*
any positive real number






bowl__sigma_t
Scope: restricted REAL



Description: bowl: width of Fermi step in time



Range Default: 1.0
(0.0:*
any positive real number






bowl__strength
Scope: restricted REAL



Description: bowl: deformation strength



Range Default: 0.5
0.0:*
any real number >= 0






bowl__t0
Scope: restricted REAL



Description: bowl: center of Fermi step in time



Range Default: 1.0
*:*
any real number






bowl__x_scale
Scope: restricted REAL



Description: bowl: scale for x coordinate



Range Default: 1.0
(0.0:*
any positive real number






bowl__y_scale
Scope: restricted REAL



Description: bowl: scale for y coordinate



Range Default: 1.0
(0.0:*
any positive real number






bowl__z_scale
Scope: restricted REAL



Description: bowl: scale for z coordinate



Range Default: 1.0
(0.0:*
any positive real number






constant_density_star__mass
Scope: restricted REAL



Description: constant density star: mass of star



Range Default: 1.0
(0.0:*
any positive real number






constant_density_star__radius
Scope: restricted REAL



Description: constant density star: radius of star



Range Default: 1.0
(0.0:*
any positive real number






de_sitter__scale
Scope: restricted REAL



Description: de Sitter: multiplicative scale factor



Range Default: 0.1
(0.0:*
any positive real number






de_sitter_lambda__scale
Scope: restricted REAL



Description: de Sitter+Lambda: multiplicative scale factor



Range Default: 0.1
(0.0:*
any positive real number






exact_model
Scope: restricted KEYWORD



Description: The exact solution/coordinates used in thorn exact



Range Default: Minkowski
Minkowski
Minkowski spacetime
Minkowski/shift
Minkowski spacetime with time-dependent shift vector
Minkowski/funny
Minkowski spacetime in non-trivial spatial coordinates
Minkowski/gauge wave
Minkowski spacetime in gauge-wave coordinates
see [1] below
Minkowski spacetime in shifted gauge-wave coordinates
Minkowski/conf wave
Minkowski spacetime with ’waves’ in conformal factor
Schwarzschild/EF
”Schwarzschild spacetime in Eddington-Finkelstei n coordinates”
Schwarzschild/PG
Schwarzschild spacetime in Painleve-Gullstrand coordinates
Schwarzschild/BL
Schwarzschild spacetime in Brill-Lindquist coordinates
see [1] below
Schwarzschild spacetime in Novikov coordinates
see [1] below
Schwarzschild metric in Schwarzschild coordinates, with cosmological constant
Kerr/Boyer-Lindquist
Kerr spacetime in Boyer-Lindquist coordinates
Kerr/Kerr-Schild
Kerr spacetime in Kerr-Schild coordinates
see [1] below
Kerr spacetime in distorted Kerr-Schild coordinates such that the horizon is a coordinate sphere
multi-BH
”Majumdar-Papapetrou or Kastor-Traschen maximally charged multi BH solutions”
Alvi
Alvi post-Newtonian 2BH spacetime (not fully implemented yet)
Thorne-fakebinary
Thorne’s fake-binary spacetime (non-Einstein)
Lemaitre
Lemaitre-type spacetime
de Sitter
de Sitter spacetime (R-W cosmology, near t=0, p=0)
de Sitter+Lambda
de Sitter spacetime with cosmological constant
see [1] below
anti-de Sitter spacetime with cosmological constant
Bianchi I
approximate Bianchi type I spacetime
Goedel
Goedel spacetime
Bertotti
Bertotti spacetime
Kasner-like
Kasner-like spacetime
Kasner-axisymmetric
axisymmetric Kasner spacetime
Kasner-generalized
generalized Kasner spacetime
Gowdy-wave
Gowdy spacetime with polarized wave on a torus
Milne
Milne spacetime for pre-big-bang cosmology
see [1] below
boost-rotation symmetric spacetime
bowl
bowl (bag-of-gold) spacetime (non-Einstein)
see [1] below
constant density (Schwarzschild) star



[1]

Minkowski/shifted gauge wave

[1]

Schwarzschild/Novikov

[1]

Schwarzschild-Lemaitre

[1]

Kerr/Kerr-Schild/spherical

[1]

anti-de Sitter+Lambda

[1]

boost-rotation symmetric

[1]

constant density star




goedel__scale
Scope: restricted REAL



Description: Goedel: multiplicative scale factor



Range Default: 0.1
(0.0:*
any positive real number






gowdy_wave__amplitude
Scope: restricted REAL



Description: Gowdy-wave: amplitude parameter



Range Default: 0.0
*:*
any real number






kasner_generalized__p1
Scope: restricted REAL



Description: Kasner-generalized: x exponent parameter



Range Default: 0.1
-1.0:1.0
any real number in the range [-1,1]






kasner_generalized__p2
Scope: restricted REAL



Description: Kasner-generalized: y exponent parameter



Range Default: 0.1
-1.0:1.0
any real number in the range [-1,1]






kasner_like__q
Scope: restricted REAL



Description: Kasner-like: q parameter



Range Default: 0.66666666666666666666
*:*
any real number






kerr_boyerlindquist__mass
Scope: restricted REAL



Description: Kerr/Boyer-Lindquist: BH mass



Range Default: 1.0
(0.0:*
any real number > 0






kerr_boyerlindquist__spin
Scope: restricted REAL



Description: Kerr/Boyer-Lindquist: dimensionless spin parameter a = J/mˆ2



Range Default: 0.6
-1.0:1.0
dimensionless spin parameter a = J/mˆ2  for Kerr black hole






kerr_kerrschild__boost_v
Scope: restricted REAL



Description: Kerr/Kerr-Schild: boost velocity of black hole in z direction



Range Default: 0.0
(-1:1)
any real number with absolute value < 1






kerr_kerrschild__epsilon
Scope: restricted REAL



Description: Kerr/Kerr-Schild: numerical fudge



Range Default: 1.e-16
0.0:*
any real number >= 0.0






kerr_kerrschild__mass
Scope: restricted REAL



Description: Kerr/Kerr-Schild: BH mass



Range Default: 1.0
(0.0:*
any real number > 0






kerr_kerrschild__parabolic
Scope: restricted BOOLEAN



Description: Kerr/Kerr-Schild: use a parabolic singularity-avoiding term



Default: no






kerr_kerrschild__power
Scope: restricted INT



Description: Kerr/Kerr-Schild: power (exponent) of numerical fudge



Range Default: 4
1:*






kerr_kerrschild__spin
Scope: restricted REAL



Description: Kerr/Kerr-Schild: dimensionless spin parameter a = J/mˆ2



Range Default: 0.6
-1.0:1.0
dimensionless spin parameter a = J/mˆ2  for Kerr black hole






kerr_kerrschild__t
Scope: restricted REAL



Description: Kerr/Kerr-Schild: time offset of black hole



Range Default: 0.0
(*:*)






kerr_kerrschild__x
Scope: restricted REAL



Description: Kerr/Kerr-Schild: x-coordinate of black hole



Range Default: 0.0
(*:*)






kerr_kerrschild__y
Scope: restricted REAL



Description: Kerr/Kerr-Schild: y-coordinate of black hole



Range Default: 0.0
(*:*)






kerr_kerrschild__z
Scope: restricted REAL



Description: Kerr/Kerr-Schild: z-coordinate of black hole



Range Default: 0.0
(*:*)






lemaitre__epsilon0
Scope: restricted REAL



Description: Lemaitre: density of the universe at time t=0



Range Default: 1.0
0.0:*
any real number >= 0






lemaitre__kappa
Scope: restricted REAL



Description: Lemaitre: multiplicative factor in equation of state



Range Default: -0.5
*:*
any real number






lemaitre__lambda
Scope: restricted REAL



Description: Lemaitre: cosmological constant



Range Default: 1.0
*:*
any real number






lemaitre__r0
Scope: restricted REAL



Description: Lemaitre: scale factor (radius) of the universe at time t=0



Range Default: 1.0
(0.0:*
any positive real number






minkowski_conf_wave__amplitude
Scope: restricted REAL



Description: Minkowski/conf wave: amplitude of the variation of the conformal factor



Range Default: 0.5
0:*
any positive real number






minkowski_conf_wave__direction
Scope: restricted INT



Description: Minkowski/conf wave: direction of ’wave’ 0,1,2 : x,y,z



Range Default: (none)
0:2
0, 1 or 2 for x, y or z






minkowski_conf_wave__wavelength
Scope: restricted REAL



Description: Minkowski/conf wave: wave length in cactus units



Range Default: 1.0
0:*
any positive real number






minkowski_funny__amplitude
Scope: restricted REAL



Description: Minkowski/funny: amplitude of Gaussian



Range Default: 0.5
0.0:1.0)
any real number in the range [0,1)






minkowski_funny__sigma
Scope: restricted REAL



Description: Minkowski/funny: width of Gaussian



Range Default: 1.0
(0.0:
any real number > 0






minkowski_gauge_wave__amplitude
Scope: restricted REAL



Description: Minkowski/gauge wave: amplitude of the wave



Range Default: 0.5
*:*
any real number






minkowski_gauge_wave__diagonal
Scope: restricted BOOLEAN



Description: Minkowski/gauge wave: should the wave run diagonally across the grid?



Default: no






minkowski_gauge_wave__lambda
Scope: restricted REAL



Description: Minkowski/gauge wave: wavelength of waves



Range Default: 0.5
*:*
any real number






minkowski_gauge_wave__omega
Scope: restricted REAL



Description: Minkowski/gauge wave: angular frequency of the wave in time



Range Default: 1.0
*:*
any real number






minkowski_gauge_wave__phase
Scope: restricted REAL



Description: Minkowski/gauge wave: phase shift of wave



Range Default: 0.0
*:*
any real number






minkowski_gauge_wave__what_fn
Scope: restricted KEYWORD



Description: Minkowski/gauge wave: what function to use



Range Default: sin
sin
1-a*sin(x)
expsin
”exp(a*sin(x)*cos(t) )”
Gaussian
1-a*exp(-x**2)






minkowski_shift__amplitude
Scope: restricted REAL



Description: Minkowski/shift: amplitude of Gaussian



Range Default: 0.5
(-1:1)
any real number < 1 in absolute value






minkowski_shift__sigma
Scope: restricted REAL



Description: Minkowski/shift: width of Gaussian



Range Default: 1.0
(0.0:*
any real number > 0






multi_bh__hubble
Scope: restricted REAL



Description: multi-BH: Hubble constant = +/- sqrt{Lambda/3}



Range Default: 0.0
*:*
any real number






multi_bh__mass1
Scope: restricted REAL



Description: multi-BH: mass of black hole number 1



Range Default: 0.0
0.0:
any real number >= 0






multi_bh__mass2
Scope: restricted REAL



Description: multi-BH: mass of black hole number 2



Range Default: 0.0
0.0:
any real number >= 0






multi_bh__mass3
Scope: restricted REAL



Description: multi-BH: mass of black hole number 3



Range Default: 0.0
0.0:
any real number >= 0






multi_bh__mass4
Scope: restricted REAL



Description: multi-BH: mass of black hole number 4



Range Default: 0.0
0.0:*
any real number >= 0






multi_bh__nbh
Scope: restricted INT



Description: multi-BH: number of black holes 0-4



Range Default: (none)
0:4
any integer in the range [0,4]






multi_bh__x1
Scope: restricted REAL



Description: multi-BH: x coord of black hole number 1



Range Default: 0.0
*:*
any real number






multi_bh__x2
Scope: restricted REAL



Description: multi-BH: x coord of black hole number 2



Range Default: 0.0
*:*
any real number






multi_bh__x3
Scope: restricted REAL



Description: multi-BH: x coord of black hole number 3



Range Default: 0.0
*:*
any real number






multi_bh__x4
Scope: restricted REAL



Description: multi-BH: x coord of black hole number 4



Range Default: 0.0
*:*
any real number






multi_bh__y1
Scope: restricted REAL



Description: multi-BH: y coord of black hole number 1



Range Default: 0.0
*:*
any real number






multi_bh__y2
Scope: restricted REAL



Description: multi-BH: y coord of black hole number 2



Range Default: 0.0
*:*
any real number






multi_bh__y3
Scope: restricted REAL



Description: multi-BH: y coord of black hole number 3



Range Default: 0.0
*:*
any real number






multi_bh__y4
Scope: restricted REAL



Description: multi-BH: y coord of black hole number 4



Range Default: 0.0
*:*
any real number






multi_bh__z1
Scope: restricted REAL



Description: multi-BH: z coord of black hole number 1



Range Default: 0.0
*:*
any real number






multi_bh__z2
Scope: restricted REAL



Description: multi-BH: z coord of black hole number 2



Range Default: 0.0
*:*
any real number






multi_bh__z3
Scope: restricted REAL



Description: multi-BH: z coord of black hole number 3



Range Default: 0.0
*:*
any real number






multi_bh__z4
Scope: restricted REAL



Description: multi-BH: z coord of black hole number 4



Range Default: 0.0
*:*
any real number






schwarzschild_bl__epsilon
Scope: restricted REAL



Description: Schwarzschild/BL: numerical fudge



Range Default: 1.e-16
0.0:*
any real number >= 0.0






schwarzschild_bl__mass
Scope: restricted REAL



Description: Schwarzschild/BL: BH mass



Range Default: 1.0
(0.0:*
any real number > 0.0






schwarzschild_ef__epsilon
Scope: restricted REAL



Description: Schwarzschild/EF: numerical fudge



Range Default: 1.e-16
0.0:*
any real number >= 0.0






schwarzschild_ef__mass
Scope: restricted REAL



Description: Schwarzschild/EF: BH mass



Range Default: 1.0
*:*
any real number






schwarzschild_lemaitre__lambda
Scope: restricted REAL



Description: Schwarzschild-Lemaitre: cosmological constant



Range Default: 1.0
*:*
any real number






schwarzschild_lemaitre__mass
Scope: restricted REAL



Description: Schwarzschild-Lemaitre: BH mass



Range Default: 1.0
(0.0:*
any real number > 0






schwarzschild_novikov__epsilon
Scope: restricted REAL



Description: Schwarzschild/Novikov: numerical fudge



Range Default: 1.e-16
0.0:*
any real number >= 0.0






schwarzschild_novikov__mass
Scope: restricted REAL



Description: Schwarzschild/Novikov: BH mass



Range Default: 1.0
(0.0:*
any real number > 0.0






schwarzschild_pg__epsilon
Scope: restricted REAL



Description: Schwarzschild/PG: numerical fudge



Range Default: 1.e-16
0.0:*
any real number >= 0.0






schwarzschild_pg__mass
Scope: restricted REAL



Description: Schwarzschild/PG: BH mass



Range Default: 1.0
(0.0:*
any real number > 0.0






thorne_fakebinary__atype
Scope: restricted KEYWORD



Description: Thorne-fakebinary: binary type



Range Default: constant
constant
quadrupole






thorne_fakebinary__epsilon
Scope: restricted REAL



Description: Thorne-fakebinary: numerical fudge



Range Default: 1.e-16
0.0:*
any real number >= 0.0






thorne_fakebinary__mass
Scope: restricted REAL



Description: Thorne-fakebinary: mass



Range Default: 1.0
(0.0:*
any real number > 0






thorne_fakebinary__omega0
Scope: restricted REAL



Description: Thorne-fakebinary: initial angular frequency



Range Default: 1.0
(0.0:*
any real number > 0






thorne_fakebinary__retarded
Scope: restricted BOOLEAN



Description: Thorne-fakebinary: use retarded time?



Default: no






thorne_fakebinary__separation
Scope: restricted REAL



Description: Thorne-fakebinary: initial separation



Range Default: 5.0
(0.0:*
any real number > 0






thorne_fakebinary__smoothing
Scope: restricted REAL



Description: Thorne-fakebinary: smoothing for Newtonian potential



Range Default: 0.0
0.0:*
any real number >= 0






conformal_storage
Scope: shared from STATICCONFORMALKEYWORD



9 Interfaces

General

Implements:

exact

Inherits:

admbase

grid

coordgauge

staticconformal

Grid Variables

9.0.1 PRIVATE GROUPS





  Group Names     Variable Names   Details    




exact_slice compact 0
slicex description Position of an arbitrary slice in exact solution spacetime
slicey dimensions 3
slicez distribution DEFAULT
slicet group type GF
timelevels 1
variable type REAL




exact_slicetemp1 compact 0
slicetmp1x description Temporary grid functions 1
slicetmp1y dimensions 3
slicetmp1z distribution DEFAULT
slicetmp1t group type GF
timelevels 1
variable type REAL




exact_slicetemp2 compact 0
slicetmp2x description Temporary grid functions 2
slicetmp2y dimensions 3
slicetmp2z distribution DEFAULT
slicetmp2t group type GF
timelevels 1
variable type REAL




9.0.2 PROTECTED GROUPS





  Group Names     Variable Names   Details    




exact_pars_int compact 0
decoded_exact_model description parameters copied to grid scalars so CalcTmunu code sees them in evolution thorns
dimensions 0
distribution CONSTANT
group type SCALAR
timelevels 1
variable type INT




exact_pars_real compact 0
Schwarzschild_Lemaitre___Lambda description parameters copied to grid scalars so CalcTmunu code sees them in evolution thorns
Schwarzschild_Lemaitre___mass dimensions 0
Lemaitre___kappa distribution CONSTANT
Lemaitre___Lambda group type SCALAR
Lemaitre___epsilon0 timelevels 1
Lemaitre___R0 variable type REAL




Uses header:

Slicing.h

10 Schedule

This section lists all the variables which are assigned storage by thorn EinsteinInitialData/Exact. Storage can either last for the duration of the run (Always means that if this thorn is activated storage will be assigned, Conditional means that if this thorn is activated storage will be assigned for the duration of the run if some condition is met), or can be turned on for the duration of a schedule function.

Storage

 

Always: Conditional:
Exact_pars_int Exact_slice
Exact_pars_real Exact_slicetemp1
  Exact_slicetemp2
   

Scheduled Functions

CCTK_PARAMCHECK

  exact_paramcheck

  do consistency checks on our parameters

 

  Language: c
  Options: global
  Type: function

ADMBase_InitialData (conditional)

  exact__decode_pars

  decode/copy thorn exact parameters into grid scalars

 

  Language: fortran
  Type: function
  Writes: exact::decoded_exact_model(everywhere)
    exact::exact_pars_real(everywhere)

CCTK_PRESTEP (conditional)

  exact__initialize

  set data from exact solution on an exact slice

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    exact::decoded_exact_model
  Type: function
  Writes: admbase::metric(everywhere)
    admbase::curv(everywhere)
    staticconformal::psi(everywhere)
    staticconformal::confac_1derivs(everywhere)
    staticconformal::confac_2derivs(everywhere)
    staticconformal::conformal_state(everywhere)

MoL_PostStep (conditional)

  exact__initialize

  set data from exact solution on an exact slice

 

  Before: admbase_setadmvars
  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    exact::decoded_exact_model
  Type: function
  Writes: admbase::metric(everywhere)
    admbase::curv(everywhere)
    staticconformal::psi(everywhere)
    staticconformal::confac_1derivs(everywhere)
    staticconformal::confac_2derivs(everywhere)
    staticconformal::conformal_state(everywhere)

CCTK_POSTSTEP (conditional)

  exact__boundary

  overwrite g and k on the boundary with exact solution data

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    staticconformal::conformal_state(everywhere)
    exact::decoded_exact_model(everywhere)
  Type: function
  Writes: admbase::metric(boundary)
    admbase::curv(boundary)
    admbase::alp(boundary)
    admbase::shift(boundary)
    admbase::dtalp(boundary)
    admbase::dtshift(boundary)

AddToTmunu

  exact_addtotmunu

  set stress energy tansor based on exact solution

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    staticconformal::conformal_state(everywhere)
    exact::decoded_exact_model(everywhere)
  Type: function

  exact__slice_data

 

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    exact::exact_slice(interior)
    admbase::shift(interior)
    admbase::alp(interior)
    staticconformal::conformal_state(everywhere)
    exact::decoded_exact_model(everywhere)
  Type: function
  Writes: admbase::metric(everywhere)
    admbase::curv(everywhere)
    exact::exact_slicetemp2(everywhere)

  exact__linear_extrap_one_bndry

 

 

  Language: fortran
  Type: function

ADMBase_InitialData (conditional)

  exact__initialize

  set initial data from exact solution on a trivial slice

 

  After: exact__decode_pars
  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    exact::decoded_exact_model
  Type: function
  Writes: admbase::metric(everywhere)
    admbase::curv(everywhere)
    staticconformal::psi(everywhere)
    staticconformal::confac_1derivs(everywhere)
    staticconformal::confac_2derivs(everywhere)
    staticconformal::conformal_state(everywhere)

ADMBase_InitialData (conditional)

  exact__slice_initialize

  set initial data from exact solution on an arbitrary slice

 

  After: exact__decode_pars
  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    admbase::shift(interior)
    admbase::alp(interior)
    staticconformal::conformal_state
    exact::decoded_exact_model
  Storage: exact_slice
  Type: function
  Writes: admbase::metric(everywhere)
    admbase::curv(everywhere)
    exact::exact_slice(everywhere)
    exact::exact_slicetemp2(everywhere)

ADMBase_InitialGauge (conditional)

  exact__gauge

  set initial lapse and/or shift from exact solution on a trivial slice

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    staticconformal::conformal_state
    exact::decoded_exact_model
  Type: function
  Writes: admbase::alp(everywhere)
    admbase::shift(everywhere)
    admbase::dtalp(everywhere)
    admbase::dtshift(everywhere)

CCTK_STARTUP (conditional)

  exact__registerslicing

  register slicings

 

  Language: c
  Options: global
  Type: function

CCTK_PRESTEP (conditional)

  exact__gauge

  set evolution lapse and/or shift from exact solution on a trivial slice

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    staticconformal::conformal_state
    exact::decoded_exact_model
  Type: function
  Writes: admbase::alp(everywhere)
    admbase::shift(everywhere)
    admbase::dtalp(everywhere)
    admbase::dtshift(everywhere)

MoL_PostStep (conditional)

  exact__gauge

  set evolution lapse and/or shift from exact solution on a trivial slice

 

  Before: admbase_setadmvars
  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    staticconformal::conformal_state
    exact::decoded_exact_model
  Type: function
  Writes: admbase::alp(everywhere)
    admbase::shift(everywhere)
    admbase::dtalp(everywhere)
    admbase::dtshift(everywhere)

ADMBase_InitialData (conditional)

  exact__slice_initialize

  set initial data from exact solution on arbitrary slice

 

  After: exact__decode_pars
  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    admbase::shift(interior)
    admbase::alp(interior)
    staticconformal::conformal_state
    exact::decoded_exact_model
  Type: function
  Writes: admbase::metric(interior)
    admbase::curv(interior)
    exact::exact_slice(everywhere)
    exact::exact_slicetemp2(interior)

CCTK_EVOL (conditional)

  exact__slice_evolve

  evolve arbitrary slice and extract cauchy data

 

  Language: fortran
  Reads: grid::x
    grid::y
    grid::z
    admbase::shift(interior)
    admbase::alp(interior)
    exact::exact_slice(everywhere)
    exact::exact_slicetemp2(everywhere)
    staticconformal::conformal_state(everywhere)
    exact::decoded_exact_model(everywhere)
  Type: function
  Writes: admbase::metric(everywhere)
    admbase::curv(everywhere)
    exact::exact_slice(everywhere)
    exact::exact_slicetemp1(everywhere)
    exact::exact_slicetemp2(everywhere)