

A conservation law formulation of nonlinear elasticity in general relativity

Classical Quantum Grav. 29 015005

C. Gundlach, I. Hawke, S. Erickson

School of Mathematics, University of Southampton, UK

Einstein Toolkit Seminar, 16 January 2012

Outline

Neutron star crusts

- Crustal properties
- Crustal evolution

2 Continuum mechanics

- Matter space
- Oynamics

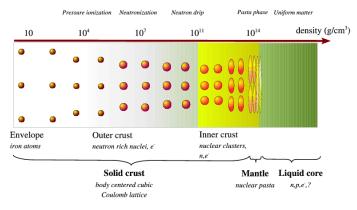
3 Numerical implementation

- Equations
- Evolution
- 4 Results
 - Simple Shock tubes
 - Multi-D

Going further

- Coupling
- Conclusions

Crust structure



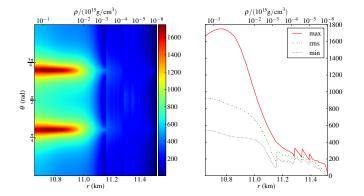
Chamel & Haensel, Liv. Rev. Relativity

For a cold NS the crust may extend from $\rho \sim 10^4$ – 10^{14} g cm⁻³. Impurities irrelevant; breaking strain large (Horowitz et al.). A crystalline QCD core is an exotic possibility.

I. Hawke (University of Southampton)

Numrelasticity

Crustal evolution



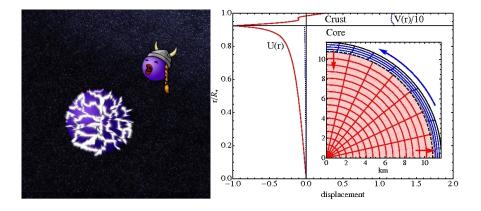
In binary inspiral, tidal effects will partially crack the crust only late on (Penner et al.).

However, resonant interface modes may shatter the whole crust (Tsang et al.).

Numrelasticity

Crustal evolution

Southampton School of Mathematics



In binary inspiral, tidal effects will partially crack the crust only late on (Penner et al.).

However, resonant interface modes may shatter the whole crust (Tsang et al.).

Outline

Neutron star crusts

- Crustal properties
- Crustal evolution

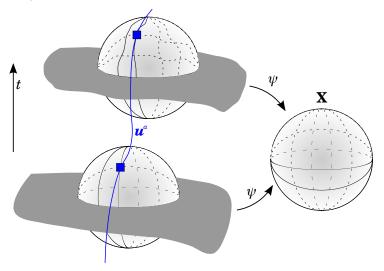
Continuum mechanics

- Matter space
- Dynamics
- 3 Numerical implementation
 - Equations
 - Evolution
- 4 Results
 - Simple Shock tubes
 - Multi-D

Going further

- Coupling
- Conclusions

Matter space

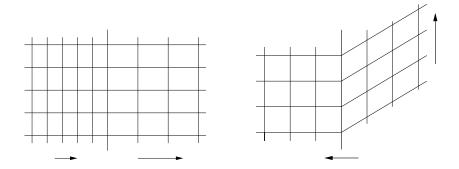


A *body* is given by a *reference configuration X*, and its deformation computed from the map ψ .

I. Hawke (University of Southampton)

Numrelasticity

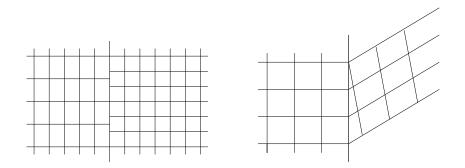
Shocks and the fluid limit



Standard fluid shocks are possible. Jump conditions $[\psi_y^{V,X}] = 0$ forbid other discontinuities.

The fluid limit is singular. Integrability conditions $\psi^{A}_{[i,j]}$ connected to hyperbolicity questions.

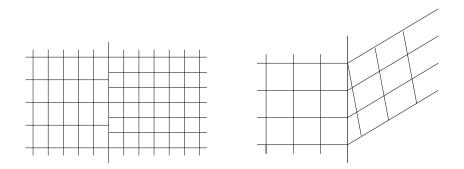
Shocks and the fluid limit



Standard fluid shocks are possible. Jump conditions $[\psi_y^{Y,X}] = 0$ forbid other discontinuities.

The fluid limit is singular. Integrability conditions $\psi^{A}_{[i,j]}$ connected to hyperbolicity questions.

Shocks and the fluid limit



Standard fluid shocks are possible. Jump conditions $[\psi_y^{Y,X}] = 0$ forbid other discontinuities.

The fluid limit is singular. Integrability conditions $\psi^{A}_{[i,j]}$ connected to hyperbolicity questions.

Dynamics

The stress-energy tensor is that of hydro, plus anisotropic terms π^{ab} :

$$T^{ab} = (e+p)u^a u^b + p g^{ab} + \pi^{ab}$$

This gives the balance laws

$$(\sqrt{\gamma_x}\mathcal{U})_{,t} + (\alpha\sqrt{\gamma_x}\mathcal{F}^i)_{,i} =$$
source terms,

with (introducing $\pi = v^i v^j \pi_{ij} = \gamma^{ij} \pi_{ij}$, and ignoring gauge terms)

$$\mathcal{U} = \begin{pmatrix} D \\ S_j \\ \tau \end{pmatrix} = \begin{pmatrix} nW \\ nhW^2 v_j + \pi_{ij} v^i \\ nhW^2 - p - D - \pi \end{pmatrix}, \quad \mathcal{F}^i \sim \begin{pmatrix} D\hat{v}^i \\ nhW^2 v_j \hat{v}^i + p\delta^i_j + \pi^i_j \\ (nhW^2 - D)\hat{v}^i + \pi^{0i} \end{pmatrix}$$

Strictly the D equation is redundant. Source terms standard.

Dynamics

The stress-energy tensor is that of hydro, plus anisotropic terms π^{ab} :

$$T^{ab} = (e+p)u^a u^b + p g^{ab} + \pi^{ab}$$

This gives the balance laws

$$(\sqrt{\gamma_x}\mathcal{U})_{,t} + (\alpha\sqrt{\gamma_x}\mathcal{F}^i)_{,i} =$$
source terms,

with (introducing $\pi = v^{i}v^{j}\pi_{ij} = \gamma^{ij}\pi_{ij}$, and ignoring gauge terms)

$$\mathcal{U} = \begin{pmatrix} D \\ S_j \\ \tau \end{pmatrix} = \begin{pmatrix} nW \\ nhW^2v_j + \pi_{ij}v^i \\ nhW^2 - p - D - \pi \end{pmatrix}, \quad \mathcal{F}^i \sim \begin{pmatrix} D\hat{v}^i \\ nhW^2v_j\hat{v}^i + p\delta^i_j + \pi^i_j \\ (nhW^2 - D)\hat{v}^i + \pi^{0i} \end{pmatrix}$$

Strictly the D equation is redundant. Source terms standard.

Outline

- Neutron star crusts
 - Crustal properties
 - Crustal evolution
 - 2 Continuum mechanics
 - Matter space
 - Dynamics
- 3 Numerical implementation
 - Equations
 - Evolution
- 4 Results
 - Simple Shock tubes
 - Multi-D
- Going further
 - Coupling
 - Conclusions

Equations

For completeness we note the full system:

$$egin{aligned} &k_{AB,t}+\hat{v}^{j}k_{AB,j}=0,\ &\psi^{A}_{i,t}+\left(\hat{v}^{j}\psi^{A}_{j}
ight)_{,i}=2\hat{v}^{j}\psi^{A}_{[i,j]}, \end{aligned}$$

and, as given earlier

$$(\sqrt{\gamma_x}\mathcal{U})_{,t} + (\alpha\sqrt{\gamma_x}\mathcal{F}^i)_{,i} =$$
source terms.

We also have constraints

$$\psi_{[i,j]}^{\boldsymbol{A}}=\boldsymbol{0},$$

and an EOS $\epsilon \equiv \epsilon(n, l^1, l^2, s)$ where $n, l^{1,2}$ are scalar invariants of k^A_B .

Con2Prim

Converting $(k_{AB}, \psi^{A}_{i}, S_{j}, \tau) \rightarrow (v^{i}, p)$ is the only remaining task.

Standard iterative approach:

- Guess four quantities: $\overline{p-\pi}$ and $\overline{\pi_{ij}v^{j}}$;
- Compute all terms consistent with the guess; in particular, \overline{n} , $\overline{I^{1,2}}$, \overline{s} can be found;
- Ise the EOS to compute p and π_{ab} from the above;
- Ompute the residuals for the guesses.

Reduces to standard approach for hydro; *very* expensive (50% of computational time).

Outline

- Neutron star crusts
 - Crustal properties
 - Crustal evolution
- 2 Continuum mechanics
 - Matter space
 - Oynamics
- 3 Numerical implementation
 - Equations
 - Evolution
- 4 Results
 - Results
 - Simple Shock tubes
 - Multi-D
- 5 Going further
 - Coupling
 - Conclusions

Newtonian shock tube

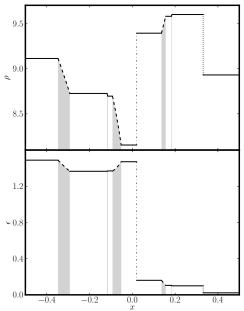
A Newtonian shock tube with all waves.

Only the right wave is a shock. Some rarefactions are very steep.

Results using 1000 points (100 shown).

All features well captured. No oscillations. Minor under/over shoots.

2- and 6-waves only clear in deformation components.



Newtonian shock tube

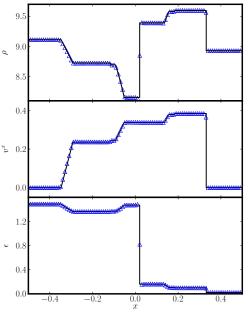
A Newtonian shock tube with all waves.

Only the right wave is a shock. Some rarefactions are very steep.

Results using 1000 points (100 shown).

All features well captured. No oscillations. Minor under/over shoots.

2- and 6-waves only clear in deformation components.



Newtonian shock tube

School of Mathematics

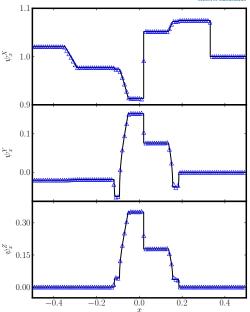
A Newtonian shock tube with all waves.

Only the right wave is a shock. Some rarefactions are very steep.

Results using 1000 points (100 shown).

All features well captured. No oscillations. Minor under/over shoots.

2- and 6-waves only clear in deformation components.



SR shock tube

A relativistic shock tube with 4 waves - no contact, 3- or 5-wave.

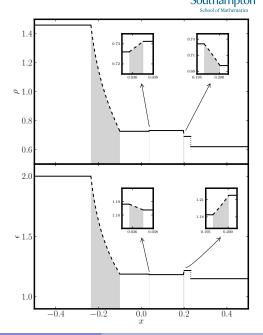
Only the right wave is a shock. Most rarefactions are very steep.

Results using 1000 points (100 shown).

All features well captured. Minor oscillations. Minor under/over shoots.

Noticeable glitch near trivial contact - converges away.

Strong deformation best seen in ψ_x^Y .



SR shock tube

A relativistic shock tube with 4 waves - no contact, 3- or 5-wave.

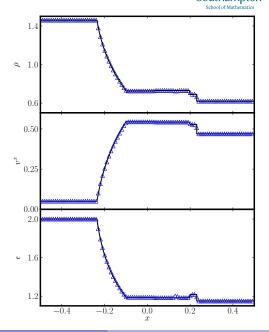
Only the right wave is a shock. Most rarefactions are very steep.

Results using 1000 points (100 shown).

All features well captured. Minor oscillations. Minor under/over shoots.

Noticeable glitch near trivial contact - converges away.

Strong deformation best seen in ψ_x^{Y} .



SR shock tube

A relativistic shock tube with 4 waves - no contact, 3- or 5-wave.

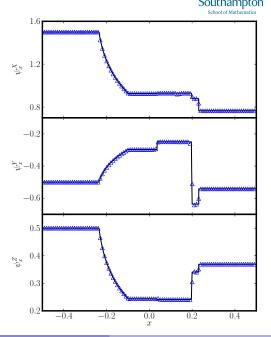
Only the right wave is a shock. Most rarefactions are very steep.

Results using 1000 points (100 shown).

All features well captured. Minor oscillations. Minor under/over shoots.

Noticeable glitch near trivial contact - converges away.

Strong deformation best seen in ψ_x^{γ} .

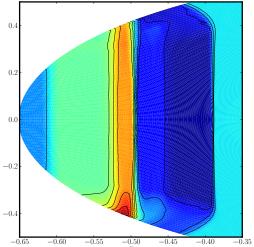


Complex shock tubes

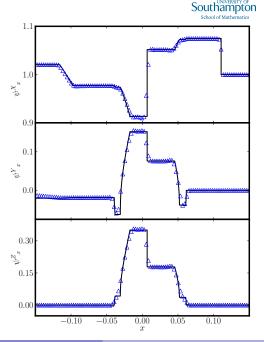
Use cylindrical coordinates with the Newtonian shock.

Tests sources, non-trivial metric.

No problems. Expected secular drift from boundary conditions.



Complex shock tubes



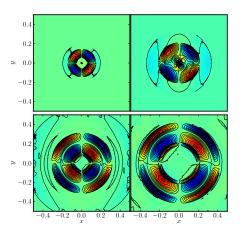
- Use cylindrical coordinates with the Newtonian shock.
- Tests sources, non-trivial metric.
- No problems. Expected secular drift from boundary conditions.

Rotor tests

Newtonian literature suggests problems with naive evolution of ψ :

- hyperbolicity issues explain this;
- I fixes can be implemented
 - constraint addition in sources stabilizes it
 - constraint damping used by some groups.

However, no problem with rotor tests in Newtonian or SR!

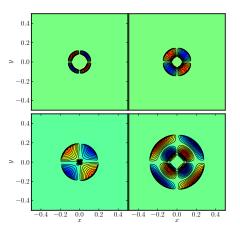


Rotor tests

Newtonian literature suggests problems with naive evolution of ψ :

- hyperbolicity issues explain this;
- I fixes can be implemented
 - constraint addition in sources stabilizes it
 - constraint damping used by some groups.

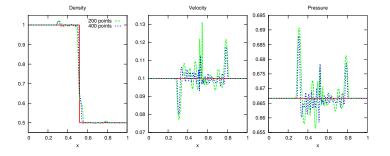
However, no problem with rotor tests in Newtonian or SR!



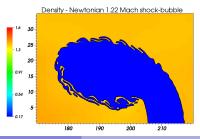
Outline

- Neutron star crusts
 - Crustal properties
 - Crustal evolution
- 2 Continuum mechanics
 - Matter space
 - Oynamics
- 3 Numerical implementation
 - Equations
 - Evolution
- 4 Results
 - Simple Shock tubes
 - Multi-D
- 5 Going further
 - Coupling
 - Conclusions

Coupling



Attempts to model crust-core transition by "smearing" $\check{\mu}$ fail. Need level sets (e.g. Millmore & Hawke) or similar.



Numrelasticity

Conclusions

- Elasticity alone a "straightforward" extension.
- ET implementation underway:
 - Basic shock tests work;
 - Use to test multi-D constraint issues with mesh refinement already suggesting issues with hyperbolicity?
- Outstanding questions include
 - Accurate numerics characteristic structure really complex
 - 2 Multi-D issues especially constraints
 - Weak solution existence/uniqueness implies EOS constraints?
 - Multi-material coupling, and melting/freezing.
 - Shattering fracture mechanics, wave propagation.
 - Oupling to magnetic fields.

We note that by assumption k_{AB} is differentiable. We can thus evolve k_{AB} using naive central differencing.

We then choose primitive variables (ψ^{A}_{i}, v^{i}, p) and evolve the remaining equations using standard HRSC methods:

- MoL typically RK3;
- Slope limiting RSA typically van Leer MC;
- HLL flux typically with excessive dissipation.

Fix flat space and ignore hyperbolicity fix for now: the source terms are all trivial.

We note that by assumption k_{AB} is differentiable. We can thus evolve k_{AB} using naive central differencing.

We then choose primitive variables (ψ^{A}_{i}, v^{i}, p) and evolve the remaining equations using standard HRSC methods:

- MoL typically RK3;
- Slope limiting RSA typically van Leer MC;
- HLL flux typically with excessive dissipation.

Fix flat space and ignore hyperbolicity fix for now: the source terms are all trivial.

EOS

The EOS depends on the strain g^{AB} compared to the reference k_{AB} and e.g. the entropy, in addition to any polarizing effects.

Simplify in two ways:

- **1** Homogeneous: $\epsilon \equiv \epsilon(g^{AB}, k_{AB}, s)$
- **2 Isotropic**: $\epsilon \equiv \epsilon(\rho, I^{1,2}, s)$ the strain dependence is encoded in the invariants of k^{A}_{B} .

Simple tests here use toy EOS using gamma-law fluid plus term proportional to *a* shear scalar.

Existence and uniqueness of weak solutions requires EOS restrictions (as yet unclear).

EOS

The EOS depends on the strain g^{AB} compared to the reference k_{AB} and e.g. the entropy, in addition to any polarizing effects.

Simplify in two ways:

- **1** Homogeneous: $\epsilon \equiv \epsilon(g^{AB}, k_{AB}, s)$
- **2 Isotropic**: $\epsilon \equiv \epsilon(\rho, I^{1,2}, s)$ the strain dependence is encoded in the invariants of k^{A}_{B} .

Simple tests here use toy EOS using gamma-law fluid plus term proportional to *a* shear scalar.

Existence and uniqueness of weak solutions requires EOS restrictions (as yet unclear).