
Modular GRMHD: Con2Prim Routines

Samuel Cupp
in collaboration with Terrence Pierre Jacques,

Leo Werneck, Zach Etienne

University of Idaho

November 2022

S. Cupp (UI) November 2022 1 / 10

Motivation

Many different general relativistic (magneto)hydrodynamic codes
implement similar or even identical pieces of code. Some examples are

routines to convert between conservative and primitive variables
Reconstruction routines (PPM, WENO, etc.)

GRMHD codes are often written in a way that is difficult for new
users/developers–particularly students–to quickly understand

separating different pieces of the code as much as is reasonable helps
keep the intention of each piece of code clear, and makes the usage
and dependencies of individual functions clearer

IllinoisGRMHD already exists in two different infrastructures (Cactus,
NRPy+), and a unified code structure across these different
ecosystems will help streamline maintenance and future development
of the code

S. Cupp (UI) November 2022 2 / 10

Motivation

Many different general relativistic (magneto)hydrodynamic codes
implement similar or even identical pieces of code. Some examples are

routines to convert between conservative and primitive variables
Reconstruction routines (PPM, WENO, etc.)

GRMHD codes are often written in a way that is difficult for new
users/developers–particularly students–to quickly understand

separating different pieces of the code as much as is reasonable helps
keep the intention of each piece of code clear, and makes the usage
and dependencies of individual functions clearer

IllinoisGRMHD already exists in two different infrastructures (Cactus,
NRPy+), and a unified code structure across these different
ecosystems will help streamline maintenance and future development
of the code

S. Cupp (UI) November 2022 2 / 10

Motivation

Many different general relativistic (magneto)hydrodynamic codes
implement similar or even identical pieces of code. Some examples are

routines to convert between conservative and primitive variables
Reconstruction routines (PPM, WENO, etc.)

GRMHD codes are often written in a way that is difficult for new
users/developers–particularly students–to quickly understand

separating different pieces of the code as much as is reasonable helps
keep the intention of each piece of code clear, and makes the usage
and dependencies of individual functions clearer

IllinoisGRMHD already exists in two different infrastructures (Cactus,
NRPy+), and a unified code structure across these different
ecosystems will help streamline maintenance and future development
of the code

S. Cupp (UI) November 2022 2 / 10

Motivation

Many different general relativistic (magneto)hydrodynamic codes
implement similar or even identical pieces of code. Some examples are

routines to convert between conservative and primitive variables
Reconstruction routines (PPM, WENO, etc.)

GRMHD codes are often written in a way that is difficult for new
users/developers–particularly students–to quickly understand

separating different pieces of the code as much as is reasonable helps
keep the intention of each piece of code clear, and makes the usage
and dependencies of individual functions clearer

IllinoisGRMHD already exists in two different infrastructures (Cactus,
NRPy+), and a unified code structure across these different
ecosystems will help streamline maintenance and future development
of the code

S. Cupp (UI) November 2022 2 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)
Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)
Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features
Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)

Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)
Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features
Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)
Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)

Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features
Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)
Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)
Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features

Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)
Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)
Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features
Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)
Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)
Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features
Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Goal: Modularize IllinoisGRMHD

We aim to modularize IllinoisGRMHD following four key tenets:

Code design and language choices must minimize pipeline for new
developers (particularly students)
Compartmentalized code is simpler and aids in debugging/extensibility
(Monoliths are bad!)
Infrastructure agnosticism–IllinoisGRMHD is already used in two
different infrastructures, and the new form should have no references to
any infrastructure-specific features
Proper documentation, code tests, and examples not only help internal
work but encourage wider community adoption and contributions

In addition, thorns will be created to provide these features within the
Einstein Toolkit

Work has begun on conservative-to-primitive routines, equation of
state code, and reconstruction code

S. Cupp (UI) November 2022 3 / 10

Philosophy: Contributor Pipeline

Students of NR must become experts in

Physics
Mathematics
Computer Science
Astronomy

Lowering barrier for entry is important to encourage continuing
development and contribution, as well as higher adoption rates for the
code

Largest barrier for many physicists is often computational in nature

Most common background for current physicists is Python and basic
C++

We aim to minimize barrier for entry by using

Python for codegen (NRPy+)
C with minimal data structures, minimal abstraction

S. Cupp (UI) November 2022 4 / 10

Philosophy: Contributor Pipeline

Students of NR must become experts in

Physics
Mathematics
Computer Science
Astronomy

Lowering barrier for entry is important to encourage continuing
development and contribution, as well as higher adoption rates for the
code

Largest barrier for many physicists is often computational in nature

Most common background for current physicists is Python and basic
C++

We aim to minimize barrier for entry by using

Python for codegen (NRPy+)
C with minimal data structures, minimal abstraction

S. Cupp (UI) November 2022 4 / 10

Philosophy: Contributor Pipeline

Students of NR must become experts in

Physics
Mathematics
Computer Science
Astronomy

Lowering barrier for entry is important to encourage continuing
development and contribution, as well as higher adoption rates for the
code

Largest barrier for many physicists is often computational in nature

Most common background for current physicists is Python and basic
C++

We aim to minimize barrier for entry by using

Python for codegen (NRPy+)
C with minimal data structures, minimal abstraction

S. Cupp (UI) November 2022 4 / 10

Philosophy: Infrastructure Agnosticism

IllinoisGRMHD, like many codes, is a monolithic code, meaning
it is difficult/messy to extend or improve
all code exists in the same directory–functions/routines not easily
discoverable to developers
the code hierarchy is opaque and must be figured out by each new
developer

IllinoisGRMHD must also work in 2 different infrastructures:
Einstein Toolkit
BlackHoles@Home (NRPy+-based)

Ultimate goals of modularization are to
“de-EinsteinToolkitify” IllinoisGRMHD
aim for zero dependencies on other codes

while adopting best practices in code development, such as
Extensive documentation (via Jupyter notebooks)
Automatic codegen whenever useful (via NRPy+)
Self-contained unit tests for each module (with their own main()
functions)
“Perfect” examples of how to implement the module

S. Cupp (UI) November 2022 5 / 10

Philosophy: Infrastructure Agnosticism

IllinoisGRMHD, like many codes, is a monolithic code, meaning
it is difficult/messy to extend or improve
all code exists in the same directory–functions/routines not easily
discoverable to developers
the code hierarchy is opaque and must be figured out by each new
developer

IllinoisGRMHD must also work in 2 different infrastructures:
Einstein Toolkit
BlackHoles@Home (NRPy+-based)

Ultimate goals of modularization are to
“de-EinsteinToolkitify” IllinoisGRMHD
aim for zero dependencies on other codes

while adopting best practices in code development, such as
Extensive documentation (via Jupyter notebooks)
Automatic codegen whenever useful (via NRPy+)
Self-contained unit tests for each module (with their own main()
functions)
“Perfect” examples of how to implement the module

S. Cupp (UI) November 2022 5 / 10

Philosophy: Infrastructure Agnosticism

IllinoisGRMHD, like many codes, is a monolithic code, meaning
it is difficult/messy to extend or improve
all code exists in the same directory–functions/routines not easily
discoverable to developers
the code hierarchy is opaque and must be figured out by each new
developer

IllinoisGRMHD must also work in 2 different infrastructures:
Einstein Toolkit
BlackHoles@Home (NRPy+-based)

Ultimate goals of modularization are to
“de-EinsteinToolkitify” IllinoisGRMHD
aim for zero dependencies on other codes

while adopting best practices in code development, such as
Extensive documentation (via Jupyter notebooks)
Automatic codegen whenever useful (via NRPy+)
Self-contained unit tests for each module (with their own main()
functions)
“Perfect” examples of how to implement the module

S. Cupp (UI) November 2022 5 / 10

Project Vision

Core Code Infrastructure

Cactus/Einstein Toolkit
NRPy+/BlackHoles@Home
Your Infrastructure/Code

Packing/unpacking (well-defined) C structs

Con2Prim

Reconstruction

Fluxes

Atmosphere Prescription

EOS

Neutrino Physics

Other Physics

S. Cupp (UI) November 2022 6 / 10

Conservative-to-Primitive Routines

Many Con2Prim routines exist which have different failure conditions,
robustness, etc.

Several groups use the same Con2Prim routines, but they are included
separately within each group’s code

Creating a shared library of Con2Prim routines with a common
interface would simplify the process of experimenting with new
routines for all groups

Implementation of a new routine can be immediately tested and used
by others once it is made public.

S. Cupp (UI) November 2022 7 / 10

Conservative-to-Primitive Routines

Many Con2Prim routines exist which have different failure conditions,
robustness, etc.

Several groups use the same Con2Prim routines, but they are included
separately within each group’s code

Creating a shared library of Con2Prim routines with a common
interface would simplify the process of experimenting with new
routines for all groups

Implementation of a new routine can be immediately tested and used
by others once it is made public.

S. Cupp (UI) November 2022 7 / 10

Conservative-to-Primitive Routines

Many Con2Prim routines exist which have different failure conditions,
robustness, etc.

Several groups use the same Con2Prim routines, but they are included
separately within each group’s code

Creating a shared library of Con2Prim routines with a common
interface would simplify the process of experimenting with new
routines for all groups

Implementation of a new routine can be immediately tested and used
by others once it is made public.

S. Cupp (UI) November 2022 7 / 10

Conservative-to-Primitive Routines

Many Con2Prim routines exist which have different failure conditions,
robustness, etc.

Several groups use the same Con2Prim routines, but they are included
separately within each group’s code

Creating a shared library of Con2Prim routines with a common
interface would simplify the process of experimenting with new
routines for all groups

Implementation of a new routine can be immediately tested and used
by others once it is made public.

S. Cupp (UI) November 2022 7 / 10

Development Progress

several structs are defined to uniformly provide data about the
simulation

Point-wise data structs provide convenient method for communicating
data about conservatives, primitives, and metric quantities to
Con2Prim methods

Comments detail the quantities contained in each structure, as well as
any assumptions (e.g. conservatives are densitized)

Code has been condensed into a small number of functions, and some
logic has been reduced or pulled into the associated functions

Functions for packing/unpacking the structs are provided

S. Cupp (UI) November 2022 8 / 10

Development Progress

several structs are defined to uniformly provide data about the
simulation

Point-wise data structs provide convenient method for communicating
data about conservatives, primitives, and metric quantities to
Con2Prim methods

Comments detail the quantities contained in each structure, as well as
any assumptions (e.g. conservatives are densitized)

Code has been condensed into a small number of functions, and some
logic has been reduced or pulled into the associated functions

Functions for packing/unpacking the structs are provided

S. Cupp (UI) November 2022 8 / 10

Development Progress

several structs are defined to uniformly provide data about the
simulation

Point-wise data structs provide convenient method for communicating
data about conservatives, primitives, and metric quantities to
Con2Prim methods

Comments detail the quantities contained in each structure, as well as
any assumptions (e.g. conservatives are densitized)

Code has been condensed into a small number of functions, and some
logic has been reduced or pulled into the associated functions

Functions for packing/unpacking the structs are provided

S. Cupp (UI) November 2022 8 / 10

Development Progress

several structs are defined to uniformly provide data about the
simulation

Point-wise data structs provide convenient method for communicating
data about conservatives, primitives, and metric quantities to
Con2Prim methods

Comments detail the quantities contained in each structure, as well as
any assumptions (e.g. conservatives are densitized)

Code has been condensed into a small number of functions, and some
logic has been reduced or pulled into the associated functions

Functions for packing/unpacking the structs are provided

S. Cupp (UI) November 2022 8 / 10

Con2Prim Pseudocode

Declare/initialize GRMHD parameters params;
Declare/initialize eos parameters eos;
Declare/initialize con2prim diagnostics diagnostics;
OMP for (loop over grid)
{
Declare/initialize metric quantities metric;
Declare/initialize primitive quantities prims, prims guess;
Declare/initialize conservative quantities cons, cons undens;

apply inequality fixes(¶ms, &eos, &metric, &prims, &cons, &diagnostics);

undensitize conservatives(&eos, &metric, &prims, &cons, &cons undens);

guess primitives(&eos, &metric, &prims, &cons, &prims guess);

con2prim method(&eos, &metric, &cons undens, &prims guess, &diagnostics);

if(con2prim fails)
font fix(&eos, &metric, &cons undens, &prims, &prims guess, &diagnostics);

return primitives(&prims, primitive variable pointers);

return conservatives(&cons, conservative variable pointers);
}

diagnostic report(&diagnostics);

S. Cupp (UI) November 2022 9 / 10

Current Status and Remaining Tasks

significant progress towards condensing Con2Prim code into a small
number of self-contained function calls

Con2Prim thorn now compiles, can be called by IllinoisGRMHD’s
Con2Prim driver function

Next steps are debugging and validation

Still has a “kernel” function containing much of the logic which needs
to be popped open and condensed after debugging changes from
IllinoisGRMHD’s arrays to the new structs

Current thorn implementation is tentative and will change
significantly before release

Code will move to a different location eventually, but my working
version is available at
https://github.com/SamuelCupp/Con2Prim_beta

S. Cupp (UI) November 2022 10 / 10

https://github.com/SamuelCupp/Con2Prim_beta

Current Status and Remaining Tasks

significant progress towards condensing Con2Prim code into a small
number of self-contained function calls

Con2Prim thorn now compiles, can be called by IllinoisGRMHD’s
Con2Prim driver function

Next steps are debugging and validation

Still has a “kernel” function containing much of the logic which needs
to be popped open and condensed after debugging changes from
IllinoisGRMHD’s arrays to the new structs

Current thorn implementation is tentative and will change
significantly before release

Code will move to a different location eventually, but my working
version is available at
https://github.com/SamuelCupp/Con2Prim_beta

S. Cupp (UI) November 2022 10 / 10

https://github.com/SamuelCupp/Con2Prim_beta

Current Status and Remaining Tasks

significant progress towards condensing Con2Prim code into a small
number of self-contained function calls

Con2Prim thorn now compiles, can be called by IllinoisGRMHD’s
Con2Prim driver function

Next steps are debugging and validation

Still has a “kernel” function containing much of the logic which needs
to be popped open and condensed after debugging changes from
IllinoisGRMHD’s arrays to the new structs

Current thorn implementation is tentative and will change
significantly before release

Code will move to a different location eventually, but my working
version is available at
https://github.com/SamuelCupp/Con2Prim_beta

S. Cupp (UI) November 2022 10 / 10

https://github.com/SamuelCupp/Con2Prim_beta

Current Status and Remaining Tasks

significant progress towards condensing Con2Prim code into a small
number of self-contained function calls

Con2Prim thorn now compiles, can be called by IllinoisGRMHD’s
Con2Prim driver function

Next steps are debugging and validation

Still has a “kernel” function containing much of the logic which needs
to be popped open and condensed after debugging changes from
IllinoisGRMHD’s arrays to the new structs

Current thorn implementation is tentative and will change
significantly before release

Code will move to a different location eventually, but my working
version is available at
https://github.com/SamuelCupp/Con2Prim_beta

S. Cupp (UI) November 2022 10 / 10

https://github.com/SamuelCupp/Con2Prim_beta

