
A COMMUNITY-FRIENDLY PYTHON TOOL TO ANALYZE EINSTEIN
TOOLKIT SIMULATIONS
Introducing kuibit

February 4, 2021

Gabriele Bozzola
Department of Astronomy and Steward Observatory,
University of Arizona

1

Part 1: Overview and motivation

KUIBIT IS A PYTHON LIBRARY FOR POST-PROCESSING SIMULATIONS

→ At first order, reimplementation of Kastaun’s PostCactus
→ Support for

→ 1D, 2D, 3D, HDF5 and ASCII grid data
→ timeseries, frequency series (CarpetIOASCII)
→ gravitational waves with WeylScal4 (energy, angular momenta, mismatch,

extrapolation to infinity, …)
→ detector sensitivity curves
→ unit conversion
→ apparent horizons and quasi-local measures

→ Take care of all the low-level details

3

TEASER: COMPUTE EQUATION VIOLATION

Problem: you output Vi in 3D HDF5 files from MPI run, compute the maximum
violation of ∇2Vx + x ∂iVi = 0 as a function of the iteration

def violation(path_sim_data, it):
gfs = SimDir(path_sim_data).gridfunctions.xyz

V = gfs['Vx'][it], gfs['Vy'][it], gfs['Vx'][it]

laplacian_Vx = sum(V[0].gradient(order=2))
div_V = sum(V[i].partial_derived(i) for i in range(3))

eq = laplacian_Vx + dx_div_V * V[0].coordinates[0]
return eq.abs_max()

4

TEASER: COMPUTE EQUATION VIOLATION

Problem: you output Vi in 3D HDF5 files from MPI run, compute the maximum
violation of ∇2Vx + x ∂iVi = 0 as a function of the iteration

def violation(path_sim_data, it):
gfs = SimDir(path_sim_data).gridfunctions.xyz

V = gfs['Vx'][it], gfs['Vy'][it], gfs['Vx'][it]

laplacian_Vx = sum(V[0].gradient(order=2))
div_V = sum(V[i].partial_derived(i) for i in range(3))

eq = laplacian_Vx + dx_div_V * V[0].coordinates[0]
return eq.abs_max()

4

KUIBIT, A CODE FOR THE COMMUNITY. MY GOALS:

kuibit is built form the ground-up to be used and extended by others

Users

Newcomer-friendly
Workflow-agnostic

Hiding technical details
Lower entry barrier

Reduce friction to do science

Developers

Easy to extend
Well-commented code
Openly developed

Maintainers

Reduce burden

5

KUIBIT, A CODE FOR THE COMMUNITY. MY GOALS:

kuibit is built form the ground-up to be used and extended by others

Users

Newcomer-friendly
Workflow-agnostic

Hiding technical details
Lower entry barrier

Reduce friction to do science

Developers

Easy to extend
Well-commented code
Openly developed

Maintainers

Reduce burden

5

KUIBIT, A CODE FOR THE COMMUNITY. MY GOALS:

kuibit is built form the ground-up to be used and extended by others

Users

Newcomer-friendly
Workflow-agnostic

Hiding technical details
Lower entry barrier

Reduce friction to do science

Developers

Easy to extend
Well-commented code
Openly developed

Maintainers

Reduce burden

5

KUIBIT, A CODE FOR THE COMMUNITY. MY GOALS:

kuibit is built form the ground-up to be used and extended by others

Users

Newcomer-friendly
Workflow-agnostic

Hiding technical details
Lower entry barrier

Reduce friction to do science

Developers

Easy to extend
Well-commented code
Openly developed

Maintainers

Reduce burden

5

KUIBIT IS DOCUMENTED

6

THERE ARE SIMPLE TUTORIALS

7

THERE ARE REAL-WORLD EXAMPLES

8

KUIBIT IS THOROUGHLY COMMENTED

9

THERE ARE UNIT-TESTS AND CI

10

KUIBIT IS BUILT WITH MODERN TOOLS

How to get kuibit? pip install kuibit

11

Part 2: (Some) capabilities and examples

KUIBIT HAS THREE GROUPS OF MODULES

Objects

TimeSeries
FrequencySeries
UniformGridData

HierarchicalGridData
…

Readers

SimDir
HorizonsDir
MultipolesDir

GravitationalWavesDir
ScalarsDir

GridFunctionsDir
…

Utilities

gw_mismatch
sYlm

sensitivity_curves
…

13

KUIBIT HAS THREE GROUPS OF MODULES

Objects

TimeSeries
FrequencySeries
UniformGridData

HierarchicalGridData
…

Readers

SimDir
HorizonsDir
MultipolesDir

GravitationalWavesDir
ScalarsDir

GridFunctionsDir
…

Utilities

gw_mismatch
sYlm

sensitivity_curves
…

13

KUIBIT HAS THREE GROUPS OF MODULES

Objects

TimeSeries
FrequencySeries
UniformGridData

HierarchicalGridData
…

Readers

SimDir
HorizonsDir
MultipolesDir

GravitationalWavesDir
ScalarsDir

GridFunctionsDir
…

Utilities

gw_mismatch
sYlm

sensitivity_curves
…

13

UTILITIES (MOSTLY GRAVITATIONAL-WAVE STUFF AT THE MOMENT)

Convenience functions and useful routines:

→ gw_utils (e.g., luminosity_distance_to_redshift, antenna_pattern)
→ unitconv (e.g., from geometrized to physical and viceversa)
→ gw_mismatch
→ sensitivity_curves (LISA, aLIGO, CE, ET, …)

Under development (experimental branch):

→ argparse_helper
→ visualize_matplotlib
→ visualize_mayavi

14

OBJECTS (TIME AND FREQUENCY SERIES AND GRID DATA)

→ Support natively all mathematical operations (e.g. ts1 + np.sin(ts2)**3 (if
it makes sense)

→ Complex or real
→ Are callable ts(10) (internally using configurable splines)
→ Have several useful methods (e.g., cropping, Fourier transform, resampling,

integrate, derive, …)

→ *Series support native plotting with matplotlib (plt.plot(ts))
→ HierarchicalGridData is essentially a collection of UniformGridData
→ Retain information from simulation (e.g., refinement level number, iteration

number)
→ HierarchicalGridData cannot be visualized directly and have to be

resampled to UniformGridData

15

OBJECTS (TIME AND FREQUENCY SERIES AND GRID DATA)

→ Support natively all mathematical operations (e.g. ts1 + np.sin(ts2)**3 (if
it makes sense)

→ Complex or real
→ Are callable ts(10) (internally using configurable splines)
→ Have several useful methods (e.g., cropping, Fourier transform, resampling,

integrate, derive, …)
→ *Series support native plotting with matplotlib (plt.plot(ts))

→ HierarchicalGridData is essentially a collection of UniformGridData
→ Retain information from simulation (e.g., refinement level number, iteration

number)
→ HierarchicalGridData cannot be visualized directly and have to be

resampled to UniformGridData

15

OBJECTS (TIME AND FREQUENCY SERIES AND GRID DATA)

→ Support natively all mathematical operations (e.g. ts1 + np.sin(ts2)**3 (if
it makes sense)

→ Complex or real
→ Are callable ts(10) (internally using configurable splines)
→ Have several useful methods (e.g., cropping, Fourier transform, resampling,

integrate, derive, …)
→ *Series support native plotting with matplotlib (plt.plot(ts))
→ HierarchicalGridData is essentially a collection of UniformGridData
→ Retain information from simulation (e.g., refinement level number, iteration

number)
→ HierarchicalGridData cannot be visualized directly and have to be

resampled to UniformGridData

15

READERS DEAL WITH THE OUTPUT MESS AND PRESENT US WITH AN OBJECT

Readers:

→ Find the files associated to what you asked
→ Deal with reading (e.g., HDF5 files, compressed files, reading correct column)
→ Clean up the data (e.g., simulation restarts)
→ Are nested with usually three “levels”

SimDir Main point of entry (find all the files)
*Dir (e.g., GridFunctionsDir) Process files from SimDir
All* (e.g., AllGridFunctions) Organizes in the various variables
One* (e.g., OneGridFunction) Has one variable (usually indexed by iterations)

All are dictionary-like that you can print, or get keys, or access with attributes.

16

EXAMPLE: PLOT FOURIER AMPLITUDE OF MAX(RHO) 1

from kuibit.simdir import SimDir
s = SimDir('.') # type(s) => kuibit.simdir.SimDir
ts = s.timeseries # type(ts) => kuibit.cactus_scalars.ScalarsDir
maxx = ts['max'] # type(maxx) => kuibit.cactus_scalars.AllScalars
rho = maxx['rho'] # type(rho) => kuibit.timeseries.TimeSeries

print(maxx) => Available maximum timeseries: ['rho_b', 'M1', 'H', 'M3', 'M2']

What happened here? kuibit has

1. Scanned and organized all the available files in .
2. Identified what files contain scalar data
3. Identified what reductions are available
4. Identified what variables are available
5. Cleaned-up simulation restarts

17

EXAMPLE: PLOT FOURIER AMPLITUDE OF MAX(RHO) 2

import matplotlib.pyplot as plt
from kuibit.simdir import SimDir
rho = SimDir('.').ts.max['rho']

Preprocessing
rho.crop(0, 10) # Edit in-place
rho_w = rho.tukey_windowed(0.1) # Return a new object

plt.plot(abs(rho_w.to_FrequencySeries()))

Other useful methods:
derive, integrate, band_pass, crop, smooth, window,
resample, redshift, and all the mathematical operations

Only four lines of code that work on any simulation!
18

EXAMPLE: SNR FOR LISA

from kuibit.simdir import SimDir
from kuibit.sensitivity_curves import Sn_LISA

detectors = SimDir('.').gravitationalwaves
radius = 91.2

complex_strain = detectors[radius].get_strain_lm(2, 2, pcut=120)
strain_f = complex_strain.to_FrequencySeries()

SNRsq = strain_f.inner_product(strain_f, noises=Sn_LISA(strain_f.f),
fmin=20)

19

EXAMPLE: PLOT CONTOURS B2/P RATIO WITH Z = 2 AT T = 0

b = SimDir('.').gridfunctions.xyz['b'][0]
P = SimDir('.').gridfunctions.xyz['P'][0]
type(P) => kuibit.grid_data.HierarchicalGridData

ratio = b*b/P

ratio_uniform = ratio.to_UniformGridData([1000, 1000],
x0=[-10, 10], x1=[10,10],
resample=True)

type(ratio_uniform) => kuibit.grid_data.UniformGridData

ratio_on_z2 = ratio_uniform.sliced([None, None, 2])

plt.contourf(*ratio_on_z2.coordinates_from_grid(as_meshgrid=True),
ratio_on_z2.data_xyz)

20

EXAMPLE: PLOT CONTOURS B2/P RATIO WITH Z = 2 AT T = 0

What happened here? kuibit has

1. Scanned, organized, identified all ASCII and HDF5 grid files
2. Read (preferably) 3D HDF5 at given iteration
3. Read metadata from HDF5 to learn about ghost zones
4. Tried to combine different components (MPI processes) to a single one
5. Combined different variables keeping track of their definition grid
6. Resampled with trilinear interpolation AMR to uniform grid1

7. Extracted only the plane with z = 2

1Extremely high RAM consumption!
21

EXAMPLE: 3D CONTOUR PLOT

res, xmax = 300, 100

rho = (SimDir(".").gf.xyz['rho_b'][0]
.to_UniformGridData([res, res, res],
[-xmax, -xmax, -xmax],
[xmax, xmax, xmax])
.log10())

mlab.contour3d(*rho.coordinates_from_grid(as_same_shape=True),
rho.data,
transparent=True)

22

EXAMPLE: 3D CONTOUR PLOT

res, xmax = 300, 100

rho = (SimDir(".").gf.xyz['rho_b'][0]
.to_UniformGridData([res, res, res],
[-xmax, -xmax, -xmax],
[xmax, xmax, xmax])
.log10())

mlab.contour3d(*rho.coordinates_from_grid(as_same_shape=True),
rho.data,
transparent=True)

22

EXPERIMENTAL BRANCH HAS MODULES FOR VISUALIZATION AND REAL EXAMPLES

23

FINAL REMARKS

→ Code needs a lot of testing and real-world
usage

→ I haven’t touched upon horizon or multipole
data, but hopefully you will be able to
navigate the documentation

→ Telegram user group/support at
t.me/kuibit

→ Feel free to reach me at
gabrielebozzola@email.arizona.edu

→ I hope kuibit can become officially part of
Einstein Toolkit

→ A kuibit is a Tohono O’odham stick to
harvest Saguaro’s fruit

24

If we have more time

WORKING WITH HORIZONS

(This module will likely improve in the future)

horizons = SimDir('.').horizons
print(horizons)
=> Horizons found 2: 2 horizons from QLM, 2 horizons from AHFinderDirect

Access horizon with both the AH and the QLM indices
qlm_index, ah_index = 1, 2

hor = horizons[qlm_index, ah_index]
hor contains the QLM properties
type(hor.mass) # => kuibit.timeseries.TimeSeries
hor.ah is a dictionary with all the AH properties
print(hor.ah.mass) # => kuibit.timeseries.TimeSeries

x, y, z = hor.shape_at_iteration(0)
26

