We are pleased to announce the twenty-seventh release (code name "Lise Meitner") of the Einstein Toolkit, an open-source, community-developed software infrastructure for relativistic astrophysics. The major changes in this release include:
Several new arrangements and thorns have been added:
CarpetX arrangement for the new AMReX-based mesh driver and supporting thorns
GRHayLib for access to the General Relativistic Hydrodynamics Library (GRHayL)
GRHayLID for simple GR(M)HD initial data using GRHayLib (e.g. Balsara tests, isotropic gas)
GRHayLHD for GRHD evolution using GRHayL (equivalent to IllinoisGRMHD with no magnetic fields)
GRHayLIDX for CarpetX version of GRHayLID; this thorn currently runs on the host, not the gpu
GRHayLHDX for CarpetX version of GRHayLHD; this thorn currently runs on the host, not the gpu
DNSdata for importing SGRID initial data
New capabilities for existing codes:
In addition, bug fixes accumulated since the previous release in May 2023 have been included.
The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems that builds on numerous software efforts in the numerical relativity community, including code to compute initial data parameters, the spacetime evolution codes Baikal, lean_public, and McLachlan, analysis codes to compute horizon characteristics and gravitational waves, the Carpet AMR infrastructure, and the relativistic (magneto)hydrodynamics codes GRHayLHD, GRHayLHDX, GRHydro, and IllinoisGRMHD. Data analysis and post-processing is handled by the kuibit library. The Einstein Toolkit also contains a 1D self-force code. For parts of the toolkit, the Cactus Framework is used as the underlying computational infrastructure, providing large-scale parallelization, general computational components, and a model for collaborative, portable code development.
The Einstein Toolkit uses a distributed software model, and its different modules are developed, distributed, and supported either by the core team of Einstein Toolkit Maintainers or by individual groups. Where modules are provided by external groups, the Einstein Toolkit Maintainers provide quality control for modules for inclusion in the toolkit and help coordinate support. The Einstein Toolkit Maintainers currently involve staff and faculty from five different institutions and host weekly meetings that are open for anyone to join.
Guiding principles for the design and implementation of the toolkit include: open, community-driven software development; well thought-out and stable interfaces; separation of physics software from computational science infrastructure; provision of complete working production code; training and education for a new generation of researchers.
For more information about using or contributing to the Einstein Toolkit, or to join the Einstein Toolkit Consortium, please visit our web pages at http://einsteintoolkit.org, or contact the users mailing list users@einsteintoolkit.org.
The Einstein Toolkit is primarily supported by NSF 2004157/2004044/2004311/2004879/2003893/2114582/2227105 (Enabling fundamental research in the era of multi-messenger astrophysics).
The Einstein Toolkit contains about 400 regression test cases. On a large portion of the tested machines, almost all of these tests pass, using both MPI and OpenMP parallelization.
Seed_Magnetic_Fields to support the changes, parameter options were renamed; the old options are deprecated and will be removed in the next release
Seed_Magnetic_Fields_BNS is slated to be removed in the next release, as its features have been merged into Seed_Magnetic_Fields
Among the many contributors to the Einstein Toolkit and to this release in particular, important contributions to new components were made by the following authors:
Federico G. Lopez Armengol
Steven R. Brandt
Michail Chabanov
Cheng-Hsin Cheng
Samuel Cupp
Alexandru Dima
Jake Doherty
Lorenzo Ennoggi
Zachariah Etienne
Roland Haas
Terrence Pierre Jacques
Liwei Ji
Jay Kalinani
Philipp Moesta
Michal Pirog
Lucas Timotheo Sanches
Erik Schnetter
Swapnil Shankar
Wolfgang Tichy
Leonardo Werneck
To upgrade from the previous release, use GetComponents with the new thornlist to check out the new version.
See the Download page (http://einsteintoolkit.org/download.html) on the Einstein Toolkit website for download instructions.
The SelfForce-1D code uses a single git repository; thus, using
git pull; git checkout ET_2023_11
will update the code.
To install Kuibit, do the following:
pip install --user -U kuibit==1.4.0
Debian, Ubuntu, Fedora, Mint, OpenSUSE, and macOS X installations with dependencies installed as prescribed in the official installation instructions
Anvil
Deep Bayou
Delta
Expanse
Frontera
Sunrise
sourcebasedir = $WORK
and basedir = $SCRATCH/simulations
configured for this machine. You need to determine $WORK and $SCRATCH by logging in to the machine.All repositories participating in this release carry a branch ET_2023_11 marking this release. These release branches will be updated if severe errors are found.
Samuel Cupp
Steven R. Brandt
Peter Diener
Zachariah Etienne
Roland Haas
Liwei Ji
Deborah Ferguson
Gabriele Bozzola
Hyun Park
December 14, 2023