Citation Guidelines

The development of production level scientific software, such as the components of the Einstein Toolkit, represents the academic output of researchers who bring together skills in formulations, algorithms and software engineering as well as substantial domain knowledge. The scientific contributions of such researchers should be acknowledged and respected on a par with those whose expertise lie solely in theory or experiment. Further, most contributions to the Einstein Toolkit have been provided by early stage researchers --- graduate students, postdocs and young assistant professors, where proper and appropriate citation of their contributions is crucial for furthering academic careers.

The main publication for the Einstein Toolkit is (key Loffler:2011ay in the Einstein Toolkit bibtex file): Frank Löffler, Joshua Faber, Eloisa Bentivegna, Tanja Bode, Peter Diener, Roland Haas, Ian Hinder, Bruno C. Mundim, Christian D. Ott, Erik Schnetter, Gabrielle Allen, Manuela Campanelli, and Pablo Laguna. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Classical and Quantum Gravity, 29(11):115001, 2012. ( doi:10.1088/0264-9381/29/11/115001)

The current guidelines for citation of the Einstein Toolkit are:

  1. Authors are requested to cite the Einstein Toolkit web page ( in publications using results or software obtained from the toolkit.
  2. Authors are requested to individually cite publications for identified key software components from the toolkit that are used to obtain published results. These publications include, for example, details of the equations, algorithms, and verification of components. A list of components for which this applies is provided below.
  3. Authors should consult the list of suggested publications for software components from the toolkit that are used to obtain published results. A list of components for which this applies is provided below.
  4. Authors should consult the full publication page for the Einstein Toolkit (not yet in place) to determine if in their judgement it would be appropriate to provide citations for additional components than described in 1), 2) and 3).

Citations for Key Toolkit Components

Authors whose published work is derived from results obtained using the Einstein Toolkit are requested to individually cite publications for identified key software components used to obtain those results. These publications, that are listed below, include details of e.g. the equations, algorithm, and verification of components. Obviously, citations should only be given for components that were actually used.


Erik Schnetter, Scott H. Hawley, and Ian Hawke. Evolutions in 3-D numerical relativity using fixed mesh refinement. Class. Quantum Grav., 21:1465–1488, 2004. ( doi:10.1088/0264-9381/21/6/014)

Jonathan Thornburg. A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity. Class. Quantum Grav., 21:743–766, 2004. ( doi:10.1088/0264-9381/21/2/026)

Peter Diener. A new general purpose event horizon finder for 3D numerical spacetimes. Class. Quantum Grav., 20:4901–4918, 2003. ( doi:10.1088/0264-9381/20/22/014)

Luca Baiotti, Ian Hawke, Pedro J. Montero, Frank Löffler, Luciano Rezzolla, Nikolaos Stergioulas, Jose A. Font, and Ed Seidel. Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole. Phys. Rev. D, 71:024035, 2005. ( doi:10.1103/PhysRevD.71.024035)

Eric Gourgoulhon, Philippe Grandclement, and Silvano Bonazzola. Binary black holes in circular orbits. I. A global spacetime approach. Phys. Rev. D, 65:044020, 2002. ( doi:10.1103/PhysRevD.65.044020)

Philippe Grandclement, Eric Gourgoulhon, and Silvano Bonazzola. Binary black holes in circular orbits. II. Numerical methods and first results. Phys. Rev. D, 65:044021, 2002. ( doi:10.1103/PhysRevD.65.044021)

Eric Gourgoulhon, Philippe Grandclement, Keisuke Taniguchi, Jean-Alain Marck, and Silvano Bonazzola. Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. I. Method and tests. Phys. Rev. D, 63:064029, 2001. ( doi:10.1103/PhysRevD.63.064029)

David Brown, Olivier Sarbach, Erik Schnetter, Manuel Tiglio, Peter Diener, Ian Hawke, and Denis Pollney. Excision without excision: the relativistic turducken. Phys. Rev. D, 76:081503, 2007. ( doi:10.1103/PhysRevD.76.081503)

Marcus Ansorg, Bernd Brügmann, and Wolfgang Tichy. A single-domain spectral method for black hole puncture data. Phys. Rev. D, 70:064011, 2004. ( doi:10.1103/PhysRevD.70.064011)

Olaf Dreyer, Badri Krishnan, Deirdre Shoemaker, and Erik Schnetter. Introduction to isolated horizons in numerical relativity. Phys. Rev. D, 67:024018, 2003. ( doi:10.1103/PhysRevD.67.024018)

Peter Diener, Ernst Nils Dorband, Erik Schnetter, and Manuel Tiglio. New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput., 32:109–145, 2007. ( doi:10.1007/s10915-006-9123-7)

M.C. Babiuc, B. Szilagyi, J. Winicour, and Y. Zlochower. A Characteristic Extraction Tool for Gravitational Waveforms. Phys. Rev. D, 84:044057, 2011. ( doi:10.1103/PhysRevD.84.044057)
Nigel T. Bishop, Roberto Gomez, Luis Lehner, Bela Szilagyi, Jeffrey Winicour, and Richard A. Isaacson. Cauchy characteristic matching. 1998.

Zachariah B. Etienne, Vasileios Paschalidis, Roland Haas, Philipp Mösta, and Stuart L. Shapiro. IllinoisGRMHD: An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes. Class. Quant. Grav., 32(17):175009, 2015. ( doi:10.1088/0264-9381/32/17/175009)
Scott C. Noble, Charles F. Gammie, Jonathan C. McKinney, and Luca Del Zanna. Primitive variable solvers for conservative general relativistic magnetohydrodynamics. Astrophys. J., 641:626–637, 2006. ( doi:10.1086/500349)


Cactus Computational Toolkit.
Cactus Computational Toolkit Prizes.
Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Massó, Thomas Radke, Edward Seidel, and John Shalf. The Cactus framework and toolkit: Design and applications. In Vector and Parallel Processing – VECPAR'2002, 5th International Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer.

Carpet: Adaptive Mesh Refinement for the Cactus Framework.

Jonathan Thornburg. Finding apparent horizons in numerical relativity. Phys. Rev. D, 54:4899–4918, 1996. ( doi:10.1103/PhysRevD.54.4899)
Bruno Giacomazzo and Luciano Rezzolla. WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics. Class. Quantum Grav., 24:S235–S258, 2007. ( doi:10.1088/0264-9381/24/12/S16)
Ian Hawke, Frank Löffler, and Andrea Nerozzi. Excision methods for high resolution shock capturing schemes applied to general relativistic hydrodynamics. Phys. Rev. D, 71:104006, 2005. ( doi:10.1103/PhysRevD.71.104006)
Philipp Mösta, Bruno C. Mundim, Joshua A. Faber, Roland Haas, Scott C. Noble, Tanja Bode, Frank Löffler, Christian D. Ott, Christian Reisswig, and Erik Schnetter. GRHydro: A new open source general-relativistic magnetohydrodynamics code for the Einstein Toolkit. Classical and Quantum Gravity, 31(1):015005, 2014. ( doi:10.1088/0264-9381/31/1/015005)

J. David Brown, Peter Diener, Olivier Sarbach, Erik Schnetter, and Manuel Tiglio. Turduckening black holes: an analytical and computational study. Phys. Rev. D, 79:044023, 2009. ( doi:10.1103/PhysRevD.79.044023)
Kranc: Kranc assembles numerical code.
McLachlan, a public BSSN code.

Luca Del Zanna, Niccoló Bucciantini, and Pasquale Londrillo. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. 2. Magnetohydrodynamics. Astron. Astrophys., 400:397–414, 2003. ( doi:10.1051/0004-6361:20021641)

(bibtex file)